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With the proliferation of large datasets, sampling has become pervasive in data analysis. Sampling has numerous benefits
— from reducing the computation time and cost to increasing the scope of interactive analysis. A popular task in data science,
well-suited towards sampling, is the computation of fast-but-approximate aggregations over sampled data. Aggregation is a
foundational block of data analysis, with data cube being its primary construct. We observe that such aggregation queries are
typically issued in an ad-hoc, interactive setting. In contrast to one-off queries, a typical query session consists of a series
of quick queries, interspersed with the user inspecting the results and formulating the next query. The similarity between
session queries opens up opportunities for reusing computation of not just query results, but also error estimates. Error
estimates need to be provided alongside sampled results for the results to be meaningful. We propose Sesame, a rewrite
and caching framework that accelerates the entire interactive session of aggregation queries over sampled data. We focus
on two unique and computationally expensive aspects of this use case: query speculation in the presence of sampling, and
error computation, and provide novel strategies for result and error reuse. We demonstrate that our approach outperforms
conventional sampled aggregation techniques by at least an order of magnitude, without modifying the underlying database.
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1. INTRODUCTION

With the rise of the internet era and data-driven disciplines, the amount of data collected is outpacing
our ability to process it [Lohr 2012; Manyika et al. 2011]. Despite significant advances in modern
hardware and database systems, the scale of the data is often a significant issue in the field of rapid
data analysis. Modern systems often address this problem using parallelism through multi-threaded
or multi-core solutions [Kornacker and Erickson 2012]. However, despite such computational capa-
bilities, analyzing large datasets to obtain valuable insights within interactive response times contin-
ues to be a challenge — studies [Liu and Heer 2014; Shneiderman 1984] have shown that surfacing
results within the sub-second range significantly improves the analytics experience for the end-user.

In a wide variety of domains and use cases, users are happy to trade off accuracy for faster query
response times via sampling — this is particularly applicable to domains that rely on data exploration.
Sampling can also benefit accuracy-critical applications such as healthcare and finance during pre-
liminary analysis, which can be followed by the exact computation. Though there have been several
efforts towards improving query performance, there has been relatively lesser emphasis on bounded-
time execution or online aggregation [Agarwal et al. 2013; Babcock et al. 2003; Garofalakis et al.
2001; Hellerstein et al. 1997; Rosch et al. 2013; Zeng et al. 2014].
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Fig. 1: Query Workload and Reuse Model: Sesame reuses result and error computations from pre-
vious queries of the session, and pre-populates the session cache with likely follow-up queries.

Sesame considers querying in an OLAP scenario, for which we use a session-based query model.
In exploratory OLAP scenarios, we note that queries occur not in isolation, but as part of larger
query sessions [Sapia 1999]. It is common for users to pose a query, and then issue follow-up
queries based on the insights gleaned, or to query related parts of the data. Iterative, session-based
queries also make up a significant fraction of the TPC-DS queries [Poess et al. 2007]. Hence, it is
important to look at the query processing paradigm in the context of sessions. In such scenarios,
since subsequent queries are dependent on the current user query, providing interactive response
times carries a greater significance as it helps the user iterate over the query session faster. Further,
since each session query needs user supervision and constant refinement, user’s time is inherently
coupled with the query response time. As we will see in the following sections, several opportunities
arise from a session-based approach to sampled aggregation that can lead to a significant reduction
in the response time.

With analytics playing an important role in data science, data aggregation has assumed an even
greater importance. Data cube, which can be trivially explained as the union of all possible com-
binations of GROUP BY queries for different desired aggregate measures, is a fundamental and
approximable construct of aggregation. A data cube is typically materialized offline — results for
aggregate queries can then be obtained by running them over the cube. Cubes are often used by
data analysts to better understand and explore the data. However, complete materialization of the
cube is expensive and often untenable for large datasets, resulting in emergence of partially mate-
rialized cubes [Hanusse et al. 2011; Harinarayan et al. 1996]. Further, it is not possible to update
the cube for all measures and scenarios, e.g., MEDIAN, or the MIN or the MAX tuple being deleted,
etc. Offline materialization of the cube is also infeasible when a new measure is constructed by the
user on the fly. Clearly, online data cube exploration methods can be considered more practical for
such use-cases. In this age of Big Data-based analysis, avoiding computation of large cubes, while
validating multiple hypotheses quickly in a query session, will be extremely useful.

The session-based approach to querying presents a unique opportunity in the context of online
cube construction. As shown in Figure 1, while the user is perusing the results, the system can
populate the session cache with likely follow-up queries, reducing the query response time. We
use operators derived from the data cube model as the basis for query speculation. As described
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SELECT year, AVG(sales), ERR(sales)

<:> FROM sales table
WHERE country = ‘US’ GROUP BY vyear
TABLESAMPLE (10 PERCENT)

Fig. 2: Error estimates are an important component of sampled aggregation-based queries. ERR ()
represents error estimates such as standard deviation, standard error, or other variance-based com-
putations that are expensive to compute.

in the following sections, we do not restrict reuse to simple prefetching or result caching [Battle
et al. 2013; Kamat et al. 2014], but extend it to precomputation of expensive measures such as
VARIANCE. As we will see in our experimental evaluation, predicting the user’s behavior and pre-
populating the session cache with both result and error estimates drastically reduces the average
query response time. Error bars are essential in sampled aggregations. Errors for popular measures
such as SUM, MEAN, etc. are typically evaluated using variance of the measure. Figure 2 depicts a
sampled aggregation query, with some commonly-used error visualizations. In this example, as the
user needs average sales for different years, reusing result will involve simply being able to use the
values of average sales for different years from the cache. On the other hand, reusing errors will
consist of using the computed variance of sales from the cache.

While variance is an essential component of error estimation, computing it can be expensive.
Hence, in order to leverage the benefits of approximate querying more effectively, it is essential
that we expedite variance computation. An intuitive way to do so is to reuse variance computation.
Sesame is the first to focus on this critical aspect — in DICE [Kamat et al. 2014], queries with vari-
ance are run after the user query, burdening the system with an additional query, and significantly
delaying knowledge of the error estimate to the user (detailed differences between DICE and Sesame
are provided in Section 1.3). In BlinkDB [Agarwal et al. 2013], a popular offline sample construction
system, the authors use error profile to approximate the sample variance, which is not only highly
variable, but also introduces error in the error determination itself! It should be noted that Sesame’s
contributions are towards error reuse and speculation strategies that focus on session-based sampled
aggregation workloads, and are strictly orthogonal to various offline sampling techniques, such as
those employed by BlinkDB. These systems can always be combined (with considerable engineer-
ing effort) to yield additional benefits: incremental samples used in BlinkDB can be mapped to our
table shards, and their online sample selection strategy can be carefully integrated with ours. In
contrast, our system leverages a novel lattice-based session cache to reuse variance computation, in
addition to the results.

One way to expedite expensive computations is to parallelize them. A distributive measure is
defined as “an aggregate function that can be computed in a distributed way”, and an algebraic
measure is defined as “an aggregate function that has a bounded number of arguments, each of
which is obtained by applying a distributive function” [Malinowski and Zimanyi 2008]. Hence,
the calculation of distributive and algebraic measures can be made highly parallelized as well as
reusable, providing tremendous speedups. In this paper, we provide new strategies for cache and
result reuse by leveraging previously unexplored properties of statistical measures, such as variance
and standard error, which have not been classified as being algebraic so far, to answer sample-
based queries. Reusing variance computation helps avoid processing the entire dataset to calculate
variance. We can use result sets of already computed queries, which can be smaller by multiple
orders of magnitude, to do so. The reduced data size of these results increases the likelihood of them
fitting into various levels of the cache and memory hierarchy, further speeding up query execution.
Further, in Section 4.3, we show how the error reuse framework extends to user-defined measures
as well.
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Considerations: There are three key challenges when building an architecture for session-oriented
sampled aggregation queries. Our first challenge is, how can we find out the best queries to specula-
tively execute? Second, in terms of result reuse, given a choice between different parts of the cache
that can be used to answer a query, which ones should be chosen? Third, how can we provide exact
and fast computation of variance within interactive response times? As shown by our experimental
evaluation, Sesame provides lower query response times and consistent performance both within a
session as well as between query sessions, thus enabling a smooth interactive user experience.

1.1. Contributions

The overarching goal of Sesame is to accelerate sampled aggregation queries, without modifying
the underlying database, by providing a middleware. As shown in our evaluation section, Sesame
achieves speedups of up to 25 x using a single-node backend (PostgreSQL) and up to 4 x using a
distributed backend (Impala). This is made possible by the following contributions:

e Query Speculation-based Sampling: We provide execution and reuse strategies that are aware
of sharding, approximation, and the session-based OLAP workload, to enable speculative execution
in the context of sampling.

o Cube Lattice-based Session Cache: We provide a cube lattice-based session cache that expedites
the search of reusable results, and helps with the cube region-aware allocation of caching resources.

e Error Reuse: We show that error reuse is an often overlooked and yet expensive component of
sampled aggregation queries, and describe methods to extend reusability to variance computation.

o Speculating on Errors, not just Results: We note that variance is an algebraic measure, and
speculate not just on the results, but also the error.

1.2. Paper Organization

We now discuss the organization of the rest of the paper. Section 2 discusses the faceted query
model used in Sesame. Section 3 presents the overall Sesame system. Section 4 discusses our efforts
towards extending result reuse from simply measures to errors as well. Section 5 presents our ex-
periments, which are based on a completely new, and much faster, backend implementation. They
illustrate the potential of query speedups better — achieving up to 25x speedups, as opposed to 33%
provided by DICE. Finally, we present the related work in Section 6, our limitations in Section 7,
and the conclusion and ideas for future work in Section 8.

1.3. Comparison with DICE

Sesame is an extension of our previous work, DICE [Kamat et al. 2014]. The faceted query
model (Section 2) introduced in DICE has been extended to consider multiple dimensions in the
GROUP BY clause by Sesame. A new operator Resample is also introduced. We have repeated the
description of Accuracy Gain (Section 3.1) for completeness, and have elucidated the rationale
behind its design better. Our cache design (Section 3.2.1), selection of optimal views for reuse (Sec-
tion 3.2.2), and the lookup algorithm (Section 3.2.3) are novel as well. The overall algorithm (Sec-
tion 3.3) draws inspiration from DICE, while having better individual modules. Our extension of
reuse from only considering measures to errors as well is also a novel concept (Section 4). Our
experiments (Section 5) are based on an entirely new engine. While the description of table shards
has been repeated from DICE, we have now provided reasons behind their randomness (Appendix
A).

2. QUERY MODEL

We use the data cube querying techniques to model user queries since they provide the ideal frame-
work for aggregate querying. We note that Sesame has been designed for execution of SELECT,
PROJECT, and SAMPLE queries. We do not consider JOIN queries as the resulting increase in the
number of speculative queries would greatly diminish speculation efficiency. While faceted traver-
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sals have been introduced in DICE, we present them here for completeness. We have also improved
their exposition. We also introduce a new operator called Resample.

As described in Section 1, Sesame uses a session-based query model due to queries occurring in
sessions in OLAP scenarios. In a data cube, the number of possible follow-up queries is extremely
large (number of groups in the cube - 1). This creates a challenge for our speculative execution
techniques — which queries do we pick? Hence, we present a model where the user explores the
cube in a series of faceted traversals, with the subsequent query differing from the current query
on a single dimension, thereby restricting the space of queries in a principled fashion. The faceted
cube exploration model is used to guide user exploration at the frontend, and also to speculate and
execute a subset of the next possible queries at different sampling rates to maximize the probability
of the next query being present in the query cache at a high sampling rate at the backend.

In the context of cube exploration, the definitions of cube, region, and group are as per the orig-
inal data cube paper [Gray et al. 1997]. A region denotes a node in the cube lattice (Figures 3
and 5), and a group denotes tuples with the same values for attributes of that region. In the rest
of the paper, we use the following schema for illustrative purposes: table events catalogs all in-
formative system events across the cluster, and has two hierarchical dimensions and a measure —
location [zone:datacenter:rack], time [month:week:hour], and iops.

We introduce the term facet as the basic state of explo-
ration of a data cube, drawing from the use of category
counts in the exploratory search paradigm of faceted
search [Tunkelang 2009]. Facets are meant to be perused
in an interactive fashion — a user is expected to fluidly
explore the entire cube by successively perusing multi-
ple facets. Intuitively, a user explores a cube by inspect-
ing a facet of a particular cube region — a histogram view
of a subset of groups from a region. The user then ex-
plores the cube by traversing from that facet to another.
This successive facet can be a parent facet in the case
of a roll-up, a child facet in the case of a drill-down, a
sibling facet in the case of change of a group value, or
a pivot facet in the case of a change in the inspected di-
mension. Thus, the user is effectively moving around the
cube lattice to either a parent region, or a child region,
or remaining in the same region using sibling and pivot  Fjg 3. Faceted Traversals in a Cube
traversals to look at the data differently. The formal def- [ attice [Kamat et al. 2014].
initions and examples are given below.

Facet: For a region r in cube C, a facet f is a set of

groups g € r(dy.. ,), such that the group labels can differ on multiple common dimensions d;, i.e.
VGa, G € f,di(Ga) # di(G5) A d;(ga) = d;(G5), where i # j, and d; are the grouping dimensions,
and d; are the bound dimensions. In its SQL representation, a facet in a region contains a GROUP
BY on the grouping dimensions, and a conjunction of WHERE clauses on the bound dimensions. A
facet can be referred to using the notation f (d_g), dp : vp), where d—; U E; denotes the dimensions
in the region, d_g) denotes the grouping dimensions, and dj, : v, denotes the bound dimensions and
their corresponding values. Thus, the measure COUNT on the dimension iops along with the facet
f(zone, month : mq,week : w;) gives a histogram of I/O failure counts grouped by different
zones for a specific month and week. In our notation, zone represents the grouping dimension d—;,

. . rE—
and month : my, week : w; represents the bound dimensions dj, : vp.

Facet Session: A facet session F is an ordered list of facets f1...n that a user visits to explore the
data cube. A traversal can be defined as a transition from one facet to another. We now define and
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provide examples for our four traversals — Parent, Child, Sibling, and Pivot — which draw inspiration
from similar traversals over a data cube. All traversal examples given below are with respect to the
current facet f(zone, month : my,week : wy).

Parent Facet: A parent facet is defined as a facet obtained by generalizing any of the bound dimen-
sions, while keeping grouping dimensions the same. Thus, a facet f;, (CE, dpb : Upp) i8 a parent of the
facet f (@, dp : vp) if GE; = dg and dpy, : vpp represents a parent group of dy, : vp. The parent facet
f(zone, month : my) generalizes the dimension fime from the prior example. In the time hierarchy,
the lower bound week : w1 has been removed from the bound dimensions month : m1, week : w;.
Child Facet: A child facet is defined as a facet obtained by specializing any of the bound dimen-

sions. Thus, a facet fc(@7 dep @ vep) 1s a child of the facet f(@, dp : vp) if @ = d__; and dp, : vy
represents a child group of dy, : v,. The child facet f(zone, month : mq,week : wy, hour : hy)

specializes the bound time dimension, month : my, week : w1, by appending hour : h; to it.

Sibling Facet: A sibling facet is defined as a facet obtained by changing the value of exactly one

of the bound dimensions. Thus, a facet fs(cfy) ,dgp : Vsp) is a sibling of the facet f (@, dp : vp) if

dsg = ch), CEIZ = Eb) and v, and vy differ on exactly one value. The sibling facet f(zone, month :
m1,week : wy) changes the value of week in the facet f(zone, month : my,week : wy) from w,
to ws.

Pivot Facet: A pivot facet, which is slightly more complex than the above three, is defined
as any facet obtained by interchanging a grouping dimension with a bound dimension. Thus,

_ — . _— . = — — —
a facet f(dg,dp : vp) can be pivoted to the facet f,(dvg, dvp : Vup) if dpg € dp A dy € dup
and dp, : v, and d,p : vy have all but one bound dimension and value in common. The current
facet f(zone,month : mj,week : w;) can be pivoted over zone : z; giving us a pivot facet
f(week, zone : z1, month : my), where we group over the dimension week and bound the dimen-
sion zone to zy.

Resample: The above facets represent changes to the query. Resample operator, on the other hand,
is used when the user is not satisfied with the result error level at the current sampling rate, and
wishes to improve the result precision. It runs the user query at the additional sampling rate and
combines the result with the already computed one. Note that this operator is only applicable for
distributive and algebraic measures.

3. THE SESAME FRAMEWORK

Sesame presents a standard query execution workflow to the user, while using a set of several com-
plementary techniques. Figure 4 presents an architectural outline of the system. Once a user query is
received from the interactive query session, it is executed and the results are returned. After finish-
ing the execution of the user query, Sesame calls the speculation module to enumerate the different
follow-up queries, and executes an optimal subset of them. When possible, results and error com-
putations are reused from the novel lattice-based session cache, which is designed for cube-based
querying. The session is highly interactive, targeting a near-sub-second response time per query.
This necessitates an in-memory-only architecture, which Sesame employs. Sesame connects to a
SQL-capable database as its backend to execute the queries, and uses query rewriting and post-
aggregation to coordinate reuse. Sesame uses data sharding, which is a pervasive and pragmatic
technique for large data platforms.

We now give a brief overview of this section. First, we provide methods to generate the optimal
set of speculative queries (Section 3.1). Next, we describe our cache structure and techniques to
look it up (Section 3.2). Finally, we present our overall algorithm for speculative query execution
and result reuse (Section 3.3).
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Fig. 4: Sesame System Architecture.

3.1. Session-aware Speculation Schedule

It is clear from the faceted model that each ad-hoc query can yield a significantly large number of
speculative queries. Given that the time available for speculative execution is bounded, it is typically
not possible to execute all speculative queries over the entire data. It is necessary to prioritize exe-
cution of speculative queries to maximize the likelihood of results for the next query being returned
from the cache.

Accuracy Gain Heuristic: Accuracy Gain was used in DICE for determining goodness of a spec-
ulative query. We repeat it here with better exposition. In order to schedule speculative queries at
different sampling rates, we need to know the reduction in sampling error at different rates. However,
it cannot be known before actually running the query. As the standard deviation, and consequently
the error, reduce as O(\/Lﬁ) for commonly-used aggregate functions, where n is the sample size, in
a similar fashion as [Agarwal et al. 2013] who use it build their error profile, we use the following
heuristic to estimate the increase in accuracy due to a unit increase in sampling rate.

1 _ 1
\/Rcur'r' \/Rcurr +1

where R, is the current sampling rate and c is the proportionality constant. We also give lesser
importance to queries that have been recently issued by the user — although this is intuitive, we
have been unable to determine its empirical benefit, and it can consequently be excluded. We model
selection of a subset of speculative queries to execute, given the queries executed in the session so
far, as the following Mixed Integer Linear Programming problem.

MAXIMIZE:

> Prob(q) - AccuracyGain(SR) - Recency(q) - x4
9€Q

CONSTRAINT:

>, ExzecutionTime(q) - x4 < SpeculationTime
9€Q

GIVEN: z, € {0,1}

Here, ¢ is a speculative query amongst the set of all speculative queries () (all possible follow-up
queries according to the traversal model given in Section 2) at every possible sampling rate SR where
0 < SR < Number of Shards. ExecutionTime(q) is the estimated time taken to execute query
¢, and x4 indicates whether the query ¢ is part of the selected queries. Prob(q) gives the probability
of a query ¢, which should be obtained from the query logs, ExecutionTime(q) is the estimated
execution time, and SpeculationTime is the expected total speculation time, which is estimated

AccuracyGain(Reyr) = ¢ * ( ) M
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using the user behavior in the query session thus far. We have used the memory model [Averell
and Heathcote 2011] in constructing the recency function, Recency(q), although other functions
might also be useful. We have not provided its detailed description for conciseness as we could
not empirically demonstrate its utility. The individual components of the metric are normalized and
multiplied with each other as is common-place in metric design, and since our experience in using
them guides us towards it as well. The optimal set of speculative queries is determined using the
Gurobi Optimization Solver!.

3.2. Cache Lookup

We now present the different components involved in retrieving results from the cache. We show
how the query cache can be modeled as a lattice, and the benefits of doing so (Section 3.2.1). We
provide techniques to determine which cached view amongst different reusable views should be
used to retrieve results for a user query, in order to minimize the execution time (Section 3.2.2 and
Section 3.2.3).

3.2.1. Lattice-based Session Cache. We use a novel, yet intuitive cache structure based on ma-
terialized views in the backend database. We model the cache as a lattice, mimicking the data cube
model, with each cube region having a cache associated with it. This gives us a fine-grained control
and greater flexibility over caching resources — caches near the current query region can dynamically
be made larger than those further away. The lattice structure of the cache also helps speed up the
lookup for potential views that can be reused to answer the user query, by reducing the size of the
cache that needs to be searched, as described in Section 3.2.3. This structure is intuitive and more
suitable for data cube-based querying, as opposed to the commonly-occurring flat cache structure.

[z, D,RMW | [z,D,M,W,H |

Z,D,R,M,W, H

Fig. 5: Lattice-based Cache: This figure represents the lattice structure of the cube for the schema
presented in Section 2 consisting of two hierarchies, location and time, and a measure. ALL stands
for the top-most region, without any GROUP BY clause. Other regions are denoted by the initial
letter of their dimensions. We model the cache in a similar fashion as the lattice (Section 3.2.1). A
query can be answered only from its descendant regions — reducing the cache size that needs to be
searched, and allowing us to look through caches belonging to regions having smaller view sizes
first (Sections 3.2.2 and 3.2.3).

Lwww.gurobi.com

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: January 2016.



SESAME 1:9

3.2.2. Optimal View to Reuse. For distributive and algebraic measures, it is clear that the query
result can be obtained in its entirety by reusing the result of any one of its child queries. We discuss
different scenarios that provide opportunities for result reuse, and suggest the best decision in each
case. Due to the usage of memory-resident data and the lack of indexes, we can safely assume that
the optimal view to reuse would be the one with the least number of tuples [Harinarayan et al. 1996],
as queries run on larger views will take longer to scan through. To the best of our knowledge, this
is the first piece of work to enumerate the different options and provide the optimal solution in each
case. We also present an extension in the case that the data is horizontally partitioned into shards.
Similar to [Harinarayan et al. 1996], we denote by )1 < @2 if Q)1 can be answered in its entirety
by Q.

Rule 1: Consider the case where Q1 < @2 < (3, and we have to choose between Q2 and
Q3 to answer (). In this case, Q2 will have lesser number of tuples than (03, and should be pre-
ferred. For example, views constructed through GROUP BY zone, datacenter and GROUP
BY zone, datacenter, rack can be used to answer queries having GROUP BY zone,
with other parts of the queries being the same. However, GROUP BY zone, datacenter will
be smaller than GROUP BY zone, datacenter, rack, and should be preferred.

Rule 2: Suppose Q1 < @2, @1 < @3, Q2 X @3 and Q3 X Q3. In this case, there is no clear
choice between using Q2 or (Q3 to answer ()1, based on their relationship alone. In this case, we
choose the view with lesser number of tuples. For example, it is unclear whether views as a result
of GROUP BY zone, datacenter or GROUP BY zone, month will be smaller.

Rule 3 (Sharding Effect): Consider the case where two views were the result of the same query
being run on two different shards, and we had to choose between them to answer the user query. In
this case, we again choose the view with fewer number of tuples. In the case of data skew, this is an
important case to consider.

3.2.3. Lookup Algorithm. The principles given above, governed by choosing views having the
smallest possible size, are used in designing the view lookup algorithm. In order to satisfy a user
query, we look up views in the cache that can completely answer the user query. The lattice structure
of the cache helps in this process since only views in the region that the query belongs to or its
descendant regions can be used to answer a given query. Thus, we can avoid searching through a
large section of the query cache. The lookup algorithm for potential superset views can then be
given as follows.

1. First, we look up in the cache of the region that the query lies in, and add the usable views to a
candidate list.

2. Whenever all views belonging to a region are used, we add the usable views from its child regions
to the candidate list (Scenario 2).

3. Step 2 is recursed till the desired sampling rate is met, or caches of all descendant regions have
been searched.

4. If the sampling rate is not met, we run the user query on the shards that have not been used so far.

We provide a brief example of an application of the above algorithm, where we model the behav-
ior of a network analyst as he tries to understand the measure iops across various server locations
over time. Suppose the current user query is:

SELECT month, AVG(iops) FROM events
WHERE zone = ’'NorthWest’ GROUP BY month

First, we check whether the query is present in the cache of the region {zone, month} or whether
superset views are present in that cache. If the number of views present in the cache is insufficient,
we look at the cache of its child regions, {zone, datacenter, month} and {zone, month, week},
and add the usable views to the list. If all views belonging to either of these regions have been used,
the views belonging to its child regions are added, and the process followed recursively. Selecting
views along this hierarchy is straight-forward using the lattice cache presented in Figure 5.
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3.3. The Sesame Algorithm

In this section, we summarize all the design decisions involved in building Sesame, and present the
overall algorithm.

ALGORITHM 1: SesameSession

while UserQuery do
Views = FindReusableViews (UserQuery)
RunQueries (UserQuery, Views)
if Count (Views) < SamplingRate then
CountOfExtraShardsNeeded = SamplingRate - Count (Views)
Shards = FindUnusedShards ()
RunQueries (UserQuery, Shards)
end
SpecQueries = FindOptimalSet (UserQuery)
RunQueries (SpecQueries)
end

Algorithm 1 describes the overall flow of Sesame. First, the reusable views are found (Line 2).
The user query is then run on these views (Line 3). Based on the number of extra shards needed to
meet the sampling requirement (Lines 4-5), we find the shards on which the query needs to be run
(Line 6), and run them (Line 7). The optimal set of speculative queries is then determined (Line 9),
and executed till the user issues his next query (Line 10).

ALGORITHM 2: FindReusableViews

Input: Query

Output: Views

Views = FindExactMatchInCache (Query)

/* Find optimal views in the query region if the sampling rate has not
been met. */

Views = Views U FindOptimalViews (Query, Region)

/* Find optimal views recursively in the child regions till the sampling
rate is met. */

Views = Views U FindOptimalViews (Query, Descendants)

return Views

Algorithm 2 articulates the steps involved in finding the reusable views. First, we check if there
are any cached results for the exact query (Line 1). If the sampling rate is not met, we find the
optimal set of views to reuse in the query region as explained in Section 3.2.2 (Line 2). Next, we
check amongst its child regions hierarchically (Line 3), choosing optimal views at each step.

4. ERROR COMPUTATION IN SESAME

As Section 1 illustrates, variance is a necessary component of sampled aggregation queries, and
can be more expensive to compute than measures such as SUM, MEAN, COUNT, etc. Variance com-
putation can be quadratic in complexity with respect to the number of tuples. In a pre-experiment
on a standard database system using a TPC-DS derived dataset and a real-user workload, we ob-
served that including variance calculations increases query response time by nearly 54.6 %,
when compared with simply including the other measures given above. (We provide further details
in Appendix B). Thus, including variance can be substantially more expensive, and can lower the
query response time benefit of sampling.

A common approach to expediting cube materialization and online cube computation is to dis-
tribute the effort or reuse prior computations for efficiency [Nandi et al. 2012; Ng et al. 2001]. In
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Sesame, we build upon this concept in the following ways. Beyond just results, we use the fact that
variance is an algebraic measure, and that results from variance computation can be reused. We
compare various techniques that can be used to calculate variance, and detail which ones are viable
for reusing results (Sections 4.1), and which ones yield faster execution times (Sections 4.2).

4.1. Error Reuse

There has been extensive work in reusing results for measures such as SUM, MEAN, etc. [Chirkova
and Yang 2011; Halevy 2001]. However, Sesame is the first system that provides a framework for
reusing the errors as well. A common representation of variance calculation is:

1G]

1 |G|
v = (2 ni(m; —m)? + Z(m - 1)vi> )

n—1

which we call Variancecommon, Where v is the combined variance of all groups, n is the number
of tuples in the sample, m is the mean of the sample, v; is the variance of group ¢, n; is the number
of tuples in group i, m; is the mean of group 7, and |G| is the number of groups. This representation
of variance lets it be utilized as an algebraic measure as a function of mean, count, and variance of
individual groups. In this fashion, we can obtain the overall variance by combining the results from
groups, without having to access the underlying data in the variance combination step.

We now look at another representation of variance [Welford 1962]:

V= ————[n ) z7 - ( a:Z) 3)

(n)(n —1) i=1 i=1
which we call Variancep,s;. Here, x; items are present in a sample of size n. We can see that
by keeping a counter for Z?:l x; and Z?:l a2, variance can be easily computed, and thus, this
representation is algebraic as well.

It is worth noting the differences between Variancecommon and Variancer,s; from the per-
spective of interactive querying. In Variancecommon, the values for the mean, count, and variance
for each group need to be stored, whereas in Variance pqs, we only need to keep track of Z?:l T;
and Y,"" | 7. Our experiments show that the second technique is much faster (Section 5.3.6). We
further elaborate on the underlying reasons in Section 4.2.

Another famous representation of variance developed by Welford et al. [Welford 1962] and pre-
sented by Knuth [Knuth 2014] computes the running values for mean and variance as follows:

Tn — Pn—1
fin = fin—1 + % “)

Un = Up—1 + ('rn - ,un—l) : (xn - ,un) )
which we call as Variancer,cremental- Here, p, is the mean of n items, u,,—1 is the mean of the
first n — 1 items, x,, is the nt” item, v,, is the variance of n items, and v,,_; is the variance of the
first n — 1 items. We can see that since it incorporates a single value at every step, it is not conducive
for large-scale reuse.

Another variance representation derives from Equations 4 and 5, and presents a method for com-
bining means and variances of 2 groups [Chan et al. 1982]:

M2 — H

= p1+ng- (6)
niy + no
2
Ho — H1
vn=vn1+vn2+n1~n2-¥ 7
ni + no

which we call Variance g;compination- However, this representation is not amenable to being eval-
uated using a SQL query, since it only combines two groups at a time. Thus, the only two representa-
tions that can be used for variance reuse are those given by Variancecommon and Variancepgst.
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4.2. Efficiencies of Different Viable Variance Formulations

The main reason behind Variancep,s; providing results much faster than Variancecommon 18
that it does not involve variance calculation until the final step, and only needs to keep track of
Yo xiand D) x?. Variancecommon on the other hand determines the variance, mean, and
count at every step for every group. Another reason is the lack of support for nested aggregate
queries in standard databases such as PostgreSQL, MySQL, etc., which further degrades its per-
formance. Hence, from a perspective of interactive approximate query processing, Variancegqst
should be preferred over V artancecommon-

4.3. Extensibility to Other Measures

So far, we have seen how result reuse can be extended to variance. Due to the algebraic properties
of variance and thereby of standard deviation, standard error and co-efficient of variation can be
termed as algebraic as well, allowing us to reuse their computations. The error reuse and caching
framework of Sesame can also be extended to any user-defined measure whose variance can be
expressed in a closed form as a function of the variance of one of the measure dimensions. For
example, for a user-defined measure given by a * AVG(agg1) + b, where a and b are constants and
agg, is a measure dimension, the variance of the measure can be given as a?+VARIANCE (agg; ).
On the other hand, obtaining a closed form solution to the variance of holistic measures is not
always possible. As a workaround, bootstrapping is a popular choice for variance estimation. How-
ever, for a subset of holistic measures known as partially algebraic measures [Nandi et al. 2012],
it can be possible to compute the variance in an algebraic fashion. For example, for the partially
algebraic measure COUNT DISTINCT, variance can be computed using the final measure value.

5. EXPERIMENTS AND EVALUATION
5.1. Experimental Setup

Sesame has been implemented in Java 7, and uses PostgreSQL 9.3 as the default database via the
JDBC protocol. It runs on an Ubuntu Linux 14.04.1 LTS system with a 24-core 2.4GHz Intel Xeon
CPU, 256GB DDR3 @ 1866 MHz memory, and a 500GB @ 7200 RPM disk. Experiments were
carried out in an in-memory-only setting. Buffers and caches at all levels were flushed before each
experiment, and to avoid warm-up effects, results from the first of the 4 iterations were discarded,
and the mean and the standard deviation across the remaining 3 iterations are reported.

Dataset and Query Workloads: Data and query workloads were determined using TPC-DS [Poess
et al. 2007], since it is designed for evaluating performance of data warehousing queries.
TPC-DS contains four iterative query sessions that we use to design a single query session,
Workloadrpcops, consisting of 35 queries. We also collected a real-user workload from a user
study of five graduate students who were asked to analyze the TPC-DS dataset using the industry-
standard Tableau data analytics tool®. Query logs from this usage were used to generate another
query session (Workloadgeq), comprising of 21 queries. Unless otherwise specified, the experi-
ments were performed using Workloadr pcps. Sesame achieved similar performance over smaller
sessions as well. The data of size 20.7 GB was horizontally partitioned into shards, with each shard
having 100, 000 tuples, which resulted in a total of 768 shards.

5.2. Metrics:
We use the metrics listed below to evaluate the different aspects of Sesame.

Average Response Time: We present the mean and the standard deviation of the query response time
across the three runs. (Error bars are shown, but may not be visible as the coefficient of variation
is under 3% for all measurements — further elaborated upon in Section 5.4.)

2http://tableau.com
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Cache Hit Rate: The Cache Hit Rate is defined as the fraction of the user queries that are answered
from the query cache. It gives a sense of the effectiveness of query prediction.

Speculation Hit Rate: Speculation Hit Rate is defined as the ratio of speculative queries that are
reused by the user query to the total number of speculative queries run.

Overall Speculation Benefit: Running speculative queries results in the user query speeding up at
an additional expense. Hence, a metric that takes both these factors into consideration to give us
an overall picture about the benefits of speculation can be useful. We define the metric Overall
Speculation Benefit as Query Speedup x Speculation Hit Rate, where Query Speedup is defined
as the ratio of the execution time in the naive case (no speculation) to that using Sesame. The
speculation benefit can be considered to outweigh its cost when this metric is greater than 1.

5.3. Results

We define ALGOpyrr_spec as the algorithm without any limit on speculation duration. As a re-
sult, all user queries can be answered from the cache. The algorithm in which a subset of speculative
queries is determined, as given in Section 3.1, and run within a bounded time interval is defined as
ALGOgEggapm - Finally, we define ALGOpn A1y E as the algorithm where speculative query exe-
cution is turned off. Thus, comparing ALGOpyrr_sprec to ALGON A1y g gives us an idea about
the benefits of speculation. Comparing ALGOpyrr_spec t0 ALGOsgsan g informs us about
the detrimental effects of not answering a query from the query cache. The default maximum spec-
ulation duration was set to 30 seconds. Note that in the graphs, the number of shards is increased
at an exponential rate. Due to the fact that the data is sharded, once the queries are run on individ-
ual shards, the results can be combined to present a single result. This is an expensive step and is
common to all the three algorithms described above. Since data aggregation is not the focus of this
paper, and we want to better illustrate the benefits of speculative execution, the results containing
data aggregation are presented only in Sections 5.3.7 and 5.3.8.

5.3.1. Response Time across Varying Data Sizes. We can note that the execution times for
both ALGON ajvE and ALGOpy L _spEc increase linearly with increasing dataset size for both
workloads (Figures 6a, 6b). The benefit of our system is evident: ALGOgsgsan g is typically
at least an order of magnitude faster than traditional database querying. As an anecdo-
tal example, with 192 shards, ALGOsgsanE is 18 x faster than traditional execution for
Workloadrpcps and 25 x faster for Workloadgeq;-

100000 100000

- —+—ALGO_NAIVE - —+—ALGO_NAIVE
2 ALGO SESAME Workload: TPCDS 2 ALGO SESAME Workload: Real
£ 10000 - £ 10000 =
e ~=~ALGO_FULL_SPEC e ~=~ALGO_FULL_SPEC
F F
= 1000 = 1000
£ £
=1 3
© 100 & 100
b o
10 10
a8 %6 192 384 768 a8 %6 192 384 768
Number of Shards Number of Shards
(a) Workloadrpcps (b) Workloadgreai

Fig. 6: Execution Time for Different Dataset Sizes.

As expected, execution time for ALGOggs 4 g increases linearly until some of the queries need
to be run on the underlying data instead of on the cached materialized views, as shown by the time
differential between ALGOryrr spec and ALGOgsgsan e for 384 and 768 shards. To illustrate
the importance of retrieving results from the cached materialized views, we look at a couple of
illustrative examples — even when 99% of the queries were answered from the cache (in the case of
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384 shards), the speedup falls from 25.77 (for 100% Cache Hit Rate) to 21.35, and further to 9.45
when the Cache Hit Rate was 91% (in the case of 768 shards), for Workloadg.q; (Figure 6b).
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Fig. 7: Overall Speculation Benefit.

5.3.2. Overall Speculation Benefit. The Overall Speculation Benefit is similar to the query
speedup initially, which increases as a greater fraction of time is spent actually running the query
compared to the time spent in setting up the query execution, whose increase is relatively slower.
Notably, the Overall Speculation Benefit is consistently greater than 1. As the sampling rate in-
creases, a smaller fraction of the queries can be answered from the cache, causing the metric to
decrease. Thus, this metric can be used to evaluate whether speculation is worthwhile.

5.3.3. Response Time across Varying Speculation Durations. As the speculation duration de-
creases beyond a threshold, execution time starts increasing (Figure 8a). Until this threshold is
reached, user queries can be answered from the cache. Beyond this point, a greater fraction of the
query will need to be run on the underlying data as opposed to the materialized views, which can be
orders of magnitude more expensive.

10000 —#-48 shards 96 shards 12
—®—192 shards ~ —>¢-384 shards

100 7

—#-48 shards

96 shards
0.4 —#—192 shards
%384 shards

Execution Time (ms)
Cache Hit Rate
o
>

Speculation Time (seconds) Speculation Time (seconds)

(a) Effect on Response Time. (b) Effect on Cache Hit Rate.

Fig. 8: Effect of Speculation Duration.

5.3.4. Cache Hit Rate across Varying Speculation Durations. As the speculation duration de-
creases beyond the above threshold, the Cache Hit Rate decreases linearly as well(Figure 8b). The
linear decrease is expected since the number of queries that can be speculatively run will decrease
linearly as well.
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5.3.5. Comparison of View Sizes Needed. Since Sesame requires materializing additional
speculative views, we investigate the space costs associated with both ALGOnajvE and
ALGOgsggap e (Figure 9). Note that both techniques need to materialize the views after running
the user query on individual shards in order to aggregate the results into a single result set. We can
see that ALGOggs A e requires six times the space of ALGOy 41y g at the most. Considering the
benefits of improved response time and the low, plummeting costs of storage, this added expense is
clearly worth the query speedups in the context of interactive execution.

20000
@ 18000
2 16000
E 14000 —e—ALGO_NAIVE

—#—ALGO_SESAME

Number of Shards

3!
4a

. 9: Comparison of View Sizes Needed.

5.3.6. Comparison of Variancepq.st and Variancecommon- In Section 4.2, we have discussed
the reasons behind V ariancep,s; providing results faster than Variancecommon- With increasing
data size, a greater fraction of the queries needs to be computed by accessing the underlying data,
causing the benefit of using a faster variance calculation technique to become more prominent, as
shown by the increase in speedup for 768 shards (Figure 10).
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Variance_Common

=@ Variance_Fast
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Fig. 10: Comparison of Variancerqs: and Variancecommon-

5.3.7. Hotspots — Where is Time Spent in Sampled Aggregations?. We investigate the distribu-
tion of query execution time amongst the different phases of sampled aggregation queries (Fig-
ure 11). We first enumerate the various steps where a significant amount of time is spent. Before
actually running the queries, we formulate a plan for doing so, taking into consideration the already
cached results (time denoted by Time preQuery)- Next, we run the queries on the shards if needed
(T'imeqQuery) and finally aggregate the results from individual shards (T'ime postQuery)- We can see
that T'iémepostQuery 18 an expensive step. We can also note that T'ime preqQuery 1 negligible.
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Fig. 11: Distribution of Execution Time in Sampled Aggregations.

5.3.8. Naive Aggregation vs Aggregation Tree. As mentioned above, once the queries are
run on individual shards, their results need to be combined to present a single result to
the user. In doing so, an obvious solution is to union the results, followed by a regrouping
(ALGONA1vE.AGGREGATION )- Another option is to combine the results using an aggregation
tree (ALGOTREE.AGGREGATION)- Using an aggregation tree helps divide the workload over
multiple cores, while introducing a co-ordination expense between the threads, as well as the need
to write temporary results to memory. Even in the presence of the additional expenses, Figure 12
shows that ALGOrrEE AcerEGATION Synergizes well with Sesame, and needs approximately
half the time compared with ALGON A1V E AGGREGATION -

=®—ALGO_TREE_AGGREGATION
ALGO_NAIVE_AGGREGATION

Execution Time (ms)
w
o
o
o

48 96 192 384 768
Number of Shards

Fig. 12: Naive Aggregation vs Aggregation Tree.

5.3.9. Impact of Cores. We performed a scale-up experiment where the number of cores were
increased, while other factors were kept the same (Figure 13). We can see that the execution time
decreases with an increase in the number of cores. We note that the time taken for non-parallelizable
code is trivial compared with the time taken to actually run the queries. The reason for non-linear
increase in speedup with increasing number of cores is that the only scale-up is with regards to the
number of cores — other hardware aspects stay the same. Hence, with a simple linear increase in the
number of cores, the speedup cannot be expected to be linear.

This experiment inspires us towards an interesting observation. Using 48 cores instead of 6 pro-
vides a speedup of nearly 2. On the other hand, our speculation-based techniques provide a speedup
of up to 25. In this fashion, speculation can be considered as a cost-saving measure to achieve lower
execution times in some circumstances (load on the server is low).
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Fig. 13: Effect of Increasing Number of Cores (W orkloadgeqi)-

5.3.10. Impact of Multi-user Workloads. We have so far demonstrated the value of Sesame from a
single user’s perspective. However, the speculation techniques mentioned in this paper are applica-
ble to multi-user contexts as well (Figure 14). Processing queries from multiple users simultaneously
presents opportunities for cross-user cache reuse for user queries as well as speculative queries. To
study this aspect, we used 5 query sessions based on the exploratory queries of the graduate students
described earlier, each consisting of 10 queries. In the first experiment (termed as separately), the
query sessions were run independently one after the other, with a separate cache for each session.
In the second experiment (termed as simultaneously), queries from all sessions were run simulta-
neously using the same cache. Once a query finished execution, the next query in the session was
scheduled.

We can see that speculative queries took around 20% lesser time. For user queries, we obtained a
latency improvement of 19% at 384 shards, while there was no significant difference in performance
for smaller data sizes. The reason for improved performance for 384 shards is that not all results at
this sampling rate could be retrieved from the cache in the case of the queries being run separately.
However, when the queries and speculative queries for multiple users are run as part of the same
session, it is possible to leverage the common speculative queries across multiple users and run more
speculative queries as a result. This results in a larger fraction of the user queries being answered
from the cache.
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Fig. 14: Effect of Multiple Users.

5.3.11. Distributed Execution Backend: Impala. One benefit of having a rewrite-based infrastruc-
ture is the ability to study its performance in a distributed environment. Figure 15a shows the perfor-
mance of Sesame with Cloudera Impala 1.2.4 (latest available version on Amazon EC2 EMR) as the
backend, using 1 master and 15 slave nodes on Amazon EC2 of type 12 .2x1large, each having 8
cores (2.5 GHz), 61 GB of memory, and 2 x 800 GB of SSD with the maximum speculation duration
set at 90 seconds. We can see that Sesame scales well in a distributed environment, giving speedups
of up to 4.03. While these benefits are clearly significant, they are not as high as those using a
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single-node PostgreSQL server — having a distributed backend impacts Sesame’s caching layer as
well, which introduces additional latency and overhead. Architectural optimizations for distributed
contexts would be ideal future work.
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Fig. 15: Sesame on Distributed Backends.

5.3.12. Distributed Execution Backend: Spark. We also ran Sesame on Spark to compare it with
BlinkDB (available at http://blinkdb.org), as given by Figure 15b. Both Sesame and BlinkDB
were run on Spark 1.1.1 in the distributed environment described earlier, with the maximum specu-
lation duration set at 90 seconds. Both systems performed comparably with increasing data size. It
should be noted that while BlinkDB estimates variance using the error profile of a smaller subset,
Sesame computes the exact variance over the entire sample (detailed comparison provided in Sec-
tion 1). Additionally, Sesame’s performance can be improved further by tuning it specifically for
Spark, as opposed to our current backend-agnostic approach.
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Fig. 16: Errors in Queries of a Session.

5.3.13. Average Errors in a Sample Session. To get an idea about the result quality, we looked
at the average errors for one of the real-world query sessions, which consisted of 10 queries (Sec-
tion 5.1). We can see that with increasing sampling rates, the error decreases in most cases. When the
average error is extremely low, increase in sampling rate might cause the average error to increase
marginally. For some other queries, when the sampling rate initially increases (from 48 shards to 96
shards), the average error also increases due to the introduction of new groups with slightly higher
errors. Since the error rates of individual queries are distinct, and also have different patterns with
increasing sampling rates, it is difficult to quantify the benefit of increased sampling rates before-
hand (which is the basis of our Accuracy Gain heuristic). We note that the average session error for
384 shards, i.e. sampling rate of 50%, was around 10%.
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5.4. Insights

We have seen the benefits of reusing variance computation to speed up query execution using spec-
ulative querying, and studied the benefits offered by each of Sesame’s features. A noticeable insight
is the high penalty paid in execution time initially when the Cache Hit Rate falls below 100%. This
is due to the fact that the overall response time is governed by the time to execute the query on all
shards. Having an initial drop in Cache Hit Rate results in higher response times for a few queries,
bumping up the overall response time. We believe we can mitigate these effects by improving our
query scheduling mechanism by scheduling queries that need to access underlying data before those
that can reuse the results.

The variation in query response time of Sesame is quite low. This can be evidenced by the
fact that the coefficient of variation is at most 3% for ALGOnarvE, ALGOsEsamE, and
ALGOFryrL_spEc, for both datasets. For this reason, the error bars are not clearly visible, though
they are displayed in most of the cases.

5.5. User Behavior

The efficacy of our faceted query model, which has been designed using the data cube traversals of
roll-up, drill-down, and pivot, has been verified using two real-world query logs. In DICE, we ana-
lyzed a query log of ad-hoc analytical queries issued by real users, which showed that 22.97% of the
queries formed sessions. All subsequent queries were covered by our faceted model, with majority
of the traversals being sibling traversals. Our analysis of users using Tableau to explore the TPC-DS
dataset gave us an interesting breakdown of traversal patterns. All subsequent queries were based
on our traversal model, with the breakdown of individual types being as follows: Parent (26.67%),
Sibling (17.78%), Child (55.56%), and Pivot (0%). We attribute the non-usage of Pivot to the users
not being comfortable with this comparatively complex traversal.

5.6. Possible Impact on a User

The primary objective of Sesame is to accelerate execution of sampled aggregation queries by act-
ing as a middleware between the frontend and the backend. In our experiments over data consist-
ing of 384 shards (10.35 GB, 38400000 tuples), we were able to reduce the execution time from
7109 ms for ALGOn arv g to 401 ms for ALGOggsan e (Workloadrpeps) — improvements
in user activity and dataset coverage as a result of providing results within 500 ms have been well-
documented [Liu and Heer 2014]. For 768 shards, while latencies are no longer within interactive
response times, they were still reduced by around 6.3 x, from 14120 ms to 2212 ms. As the dataset
size increases further, speculation will provide reduced speedups — here, user guidance based on the
speculated results looks to be an ideal avenue for future work. We can draw similar conclusions for
Workloadgeq as well, due to its similar performance.

6. RELATED WORK

Data Cubing: The concept of the data cube, operators to explore it, and the techniques to construct
it were first proposed in the seminal work by Gray et al. [Gray et al. 1997], and has since found wide
use in diverse contexts, including peer-to-peer systems [Kalnis et al. 2002], rule mining [Kamber
et al. 1997], outlier detection [Knorr and Ng 1997; Zaiane et al. 1998], visualizations [Kahng et al.
2016; Kandel et al. 2012; Lins et al. 2013; Liu et al. 2013; Pahins et al. 2017], etc. In Sesame, instead
of computing the expensive data cube in an offline step, we construct parts of it online in anticipation
of relevant user queries. Determining which views and indexes to construct, given constraints such
as space and maintenance costs, has been studied before [Agrawal et al. 2000; Harinarayan et al.
1996; Ross et al. 1996]. In contrast, we select the views to be materialized based on our prediction
of the next user query. Materializing samples [Li et al. 2008] and succinct representations [Sismanis
et al. 2002] of the cube have also been investigated. In a similar vein as offline sample construc-
tion, a partially constructed offline cube will also speed up Sesame’s execution engine. Tableau, an
industrial software based off of Polaris [Stolte et al. 2002], uses their language for database visu-
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alization, VizQL, for exploring large multi-dimensional data cubes, by constructing an in-memory
data cube that helps rapid querying and provides quick response to changing query filters. In con-
trast, Sesame avoids the expensive offline construction of data cubes. Smart Drill-Down [Joglekar
et al. 2015] presents a novel cube operator, which using a list of rules, describes interesting parts of
a cube and helps the user interactively explore relational tables. Interestingness-based concepts are
also presented in 73 [Sarawagi and Sathe 2000] and can be incorporated in Sesame by including an
interestingness-based exploration layer, which can be accelerated by our prefetching and execution
engine.

Data Sampling and Approximate Querying: Generating samples under constraints such as
space [Agarwal et al. 2013; Chaudhuri et al. 2007; Gibbons et al. 1998], bounded-size sampling
schemes [Gemulla et al. 2013], statistical error [Sidirourgos et al. 2011], visualization error [Kwon
et al. 2017; Moritz et al. 2017], query response time [Olston et al. 2009; Peng et al. 2017; Zgraggen
et al. 2016], etc. has been looked at previously. Sesame focuses on online sampling and can incorpo-
rate such offline sampling techniques to improve the overall quality of samples. While we consider
queries containing SELECT, PROJECT, and SAMPLE operators, ideas presented in [Nirkhiwale
et al. 2013; Xu et al. 2008] can be used to extend Sesame to handle relational joins.

View Reuse: There has been significant work in query rewriting using materialized
views [Chirkova and Yang 2011; Halevy 2001; Kotidis and Roussopoulos 1999; Mami and Bellah-
sene 2012; Perez and Jermaine 2014] for general purpose, warehousing, and interactive contexts;
Sesame draws from this body of work to design our session and sampling-aware caching strategies.
We articulate the various choices for view selection in an online setup in a session-aware manner,
and provide suggestions that help select the fastest option.

Prefetching: Prefetching has long been used to provide query speedups at various levels of
the computational stack such as caching [Annavaram et al. 2001; Chen et al. 2007], analytical
queries [Dimitriadou et al. 2014], social network [Wang et al. 2015b], spatial data [Tauheed et al.
2012], itemset mining [Baralis et al. 2013], etc. Caching and prefetching query results based on a
user’s query patterns has also been considered before [Battle et al. 2013; Kamat et al. 2014; Smith
1978; Zhang et al. 2001]. However, in the context of sampled aggregation, the computation of error
has always been a bottleneck, which our work addresses.

Online Aggregation & Progressive Sampling: The initial efforts in online aggregation [Hellerstein
et al. 1999, 1997] have been extended to continuous, parallel, and distributed contexts [Barnett
et al. 2013; Condie et al. 2010; Pansare et al. 2011; Qin and Rusu 2013; Wang et al. 2015a; Wu
et al. 2009]. Progressive sampling has been used to determine the optimal sample size through
dynamic increments [Elomaa and Kééridinen 2002; Estrada and Morales 2004; Gu et al. 2001; John
and Langley 1996; Provost et al. 1999]. These ideas can be used to inform Sesame users of ideal
sampling rates.

7. LIMITATIONS

Materialization of complete offline data cubes is expensive from both computation time and stor-
age space perspectives. Cubes can also be indexed, resulting in user queries being answered more
quickly, while further increasing both time and space costs. On the other hand, while Sesame does
not need offline resources, it does need them during the query session. It is also dependent on the
user following a logical exploration path in his query session, as opposed to ad-hoc querying, which
indexed data cubes can address. Further, in order to reuse error in addition to the measure, vari-
ance of the measure needs to be computable in a closed form, which limits the possible reusable
measures, as explained in Section 4.3.

Another drawback of a speculative execution framework is that the number of different specu-
lative queries can increase linearly with respect to the number of dimensions. As a result, datasets
having a higher number of dimensions will result in reduced speculation effectiveness. However,
our modality of neighborhood-based speculation is unaffected by the dimension count being high —
it is dependent on the hierarchy count, as we speculate only over nearby regions of the hierarchy.
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Note that a hierarchy can consist of several dimensions. For example, in our illustrative schema pro-
vided in Section 2, there exist six dimensions (zone, datacenter, rack, month, week, and hour) and
two hierarchies (location and time). To combat the increasing number of hierarchies, it is possible
to use smarter caching strategies based on the interestingness of the speculative queries [Joglekar
et al. 2015; Sarawagi and Sathe 2000].

8. CONCLUSION & FUTURE WORK

We have presented Sesame, a novel multi-threaded framework that leverages holistic optimization
of the query session to reduce the response time by up to an order of magnitude, when performing
aggregations over sampled data. Sesame is the first work to look into the algebraic properties of vari-
ance as part of its cache reuse mechanism. We show how using different representations of variance
affects query response time, and suggest using the representation that provides the fastest results
in the context of interactive query execution. We note that speculative query execution depends
primarily on two factors — speculation accuracy and speculation duration. Speculation duration is
dependent on the time taken by the user to peruse the results, and is beyond our purview. Specula-
tion efficiency is dependent on the user behavior and the query model, and can be improved using
query logs that reflect the user’s behavior better.

A complementary next step would be the investigation of faster techniques for post-aggregation
of results from the different shards, since this is an important and expensive step in sampled aggre-
gation queries. We plan to look into database backends that support hierarchical aggregation trees,
multi-query optimization, and query pipelining approaches for this.

Another major avenue for future work is user guidance. Speculative query execution results in
parts of the cube near the current user query being computed. This can be considered as a partial
cube materialization strategy. Useful information can be provided to the user by mining the partially
materialized cube to discover facts such as interesting groups [Sarawagi and Sathe 2000]. Further,
finding that a region has a higher interestingness quotient helps us devise strategies such as specu-
latively executing queries belonging to it at a higher sampling rate, which can also help guidance
and query steering systems such as AIDE [Cetintemel et al. 2013; Dimitriadou et al. 2014] and
SCOUT [Tauheed et al. 2012].

Any pre-defined operator that is independent of the data and is based on the relational algebra
model can be plugged into Sesame, since speculative execution is expedited when the operator has
a superset operator. However, even for a data dependent operator such as OUTLIER, which can be
defined in terms of the standard deviation, the reuse framework of Sesame can be used as long as
the underlying computations are reusable. This presents an ideal opportunity for future work.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation, under grants 1453582 and 1422977.

REFERENCES

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Stoica.
2013. BlinkDB: Queries With Bounded Errors and Bounded Response Times on Very Large
Data. EuroSys (2013).

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R Narasayya. 2000. Automated Selection of Mate-
rialized Views and Indexes in SQL Databases. VLDB (2000).

Murali Annavaram, Jignesh M Patel, and Edward S Davidson. 2001. Data Prefetching by Depen-
dence Graph Precomputation. ISCA (2001).

Lee Averell and Andrew Heathcote. 2011. The Form of the Forgetting Curve and the Fate of Mem-
ories. Mathematical Psychology (2011).

Brian Babcock, Surajit Chaudhuri, and Gautam Das. 2003. Dynamic Sample Selection for Approx-
imate Query Processing. SIGMOD (2003).

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: January 2016.



1:22 N. Kamat et al.

Elena Baralis, Tania Cerquitelli, Silvia Chiusano, and Anais Grand. 2013. P-Mine: Parallel Itemset
Mining on Large Datasets. ICDEW (2013).

Mike Barnett, Badrish Chandramouli, Robert DeLine, Steven Drucker, Danyel Fisher, Jonathan
Goldstein, Patrick Morrison, and John Platt. 2013. Stat!-An Interactive Analytics Environment
for Big Data. SIGMOD (2013).

Leilani Battle, Michael Stonebraker, and Remco Chang. 2013. Dynamic Reduction of Query Result
Sets for Interactive Visualization. Big Data, 2013 IEEE International Conference on (2013).

Ugur Cetintemel, Mitch Cherniack, Justin DeBrabant, Yanlei Diao, Kyriaki Dimitriadou, Alexander
Kalinin, Olga Papaemmanouil, and Stanley B Zdonik. 2013. Query Steering for Interactive Data
Exploration. CIDR (2013).

Tony F Chan, Gene H Golub, and Randall J LeVeque. 1982. Updating Formulae and a Pairwise
Algorithm for Computing Sample Variances. COMPSTAT (1982).

Badrish Chandramouli, Jun Yang, and Amin Vahdat. 2006. Distributed Network Querying with
Bounded Approximate Caching. DASFAA (2006).

Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. 2007. Optimized Stratified Sampling for
Approximate Query Processing. TODS (2007).

Shimin Chen, Anastassia Ailamaki, Phillip B Gibbons, and Todd C Mowry. 2007. Improving Hash
Join Performance through Prefetching. TODS (2007).

Rada Chirkova and Jun Yang. 2011. Materialized Views. Foundations and Trends in Databases
(2011).

William Cochran. 2007. Sampling Techniques. Wiley & Sons.

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, John Gerth, Justin Talbot, Khaled
Elmeleegy, and Russell Sears. 2010. Online Aggregation and Continuous Query Support in
Mapreduce. SIGMOD (2010).

Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2014. Explore-by-Example: An Au-
tomatic Query Steering Framework for Interactive Data Exploration. SIGMOD (2014).

Tapio Elomaa and Matti Kéiridinen. 2002. Progressive Rademacher Sampling. AAAI/IAAI (2002).

Alfonso Estrada and Eduardo F Morales. 2004. NSC: A New Progressive Sampling Algorithm.
workshop on Machine Learning for Scienific data Analysis (IBERAMIA 2004) (2004).

Minos N Garofalakis and others. 2001. Approximate Query Processing: Taming the TeraBytes.
VLDB (2001).

Rainer Gemulla, Peter J Haas, and Wolfgang Lehner. 2013. Non-Uniformity Issues and
Workarounds in Bounded-Size Sampling. VLDB (2013).

Phillip B Gibbons, Viswanath Poosala, Swarup Acharya, Yair Bartal, Yossi Matias, S Muthukrish-
nan, Sridhar Ramaswamy, and Torsten Suel. 1998. AQUA: System and Techniques for Approxi-
mate Query Answering. Bell Labs TR (1998).

Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao,
Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A Relational Aggregation Operator Gen-
eralizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery (1997).

Baohua Gu, Bing Liu, Feifang Hu, and Huan Liu. 2001. Efficiently Determining the Starting Sample
Size for Progressive Sampling. ECML (2001).

Alon Halevy. 2001. Answering Queries Using Views. VLDB (2001).

Nicolas Hanusse, Sofian Maabout, and Radu Tofan. 2011. Revisiting the Partial Data Cube Materi-
alization. Advances in Databases and Information Systems (2011).

Venky Harinarayan, Anand Rajaraman, and J. D. Ullman. 1996. Implementing Data Cubes Effi-
ciently. SIGMOD (1996).

Joseph M Hellerstein, Ron Avnur, Andy Chou, Christian Hidber, Chris Olston, Vijayshankar Ra-
man, Tali Roth, and Peter J Haas. 1999. Interactive Data Analysis: The Control Project. Computer
(1999).

Joseph M Hellerstein, Peter J Haas, and Helen J Wang. 1997. Online Aggregation. SIGMOD
(1997).

Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. 2015. Smart Drill-Down: A

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: January 2016.



SESAME 1:23

New Data Exploration Operator. VLDB (2015).

George H John and Pat Langley. 1996. Static Versus Dynamic Sampling for Data Mining. KDD
(1996).

Minsuk Kahng, Dezhi Fang, and Duen Horng Polo Chau. 2016. Visual exploration of machine
learning results using data cube analysis. HILDA (2016).
Panos Kalnis, Wee Siong Ng, Beng Chin Ooi, Dimitris Papadias, and Kian-Lee Tan. 2002. An
Adaptive Peer-To-Peer Network for Distributed Caching of OLAP Results. SIGMOD (2002).
Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi. 2014. Distributed and
Interactive Cube Exploration. ICDE (2014).

Micheline Kamber, Jiawei Han, and Jenny Chiang. 1997. Metarule-Guided Mining of Multi-
Dimensional Association Rules Using Data Cubes. KDD (1997).

Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. 2012. Profiler:
Integrated statistical analysis and visualization for data quality assessment. AVI (2012).

Anja Klein, Rainer Gemulla, Philipp Rosch, and Wolfgang Lehner. 2006. Derby/s: A DBMS for
Sample-Based Query Answering. SIGMOD (2006).

Edwin M Knorr and Raymond T Ng. 1997. A Unified Notion of Outliers: Properties and Computa-
tion. KDD (1997).

Donald E Knuth. 2014. Art of Computer Programming, Volume 2: Seminumerical Algorithms, The.

Marcel Kornacker and Justin Erickson. 2012. Cloudera Impala: Real-Time Queries in Apache
Hadoop, For Real. (2012).

Yannis Kotidis and Nick Roussopoulos. 1999. DynaMat: A Dynamic View Management System
for Data Warehouses. SIGMOD (1999).

Bum Chul Kwon, Janu Verma, Peter J Haas, and Cagatay Demiralp. 2017. Sampling for Scalable
Visual Analytics. Computer Graphics and Applications (2017).

Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, and Yizhou Sun. 2008. Sampling Cube: A Frame-
work for Statistical OLAP over Sampling Data. SIGMOD (2008).

Lauro Lins, James T Klosowski, and Carlos Scheidegger. 2013. Nanocubes for Real-Time Explo-
ration of Spatiotemporal Datasets. TVCG (2013).

Zhicheng Liu and Jeffrey Heer. 2014. The Effects of Interactive Latency on Exploratory Visual
Analysis. TVCG (2014).

Zhicheng Liu, Biye Jiang, and Jeffrey Heer. 2013. imMens: Real-time Visual Querying of Big Data.
Computer Graphics Forum (2013).

Steve Lohr. 2012. The Age of Big Data. New York Times 11 (2012).

Elzbieta Malinowski and Esteban Zimanyi. 2008. Advanced Data Warehouse Design: From Con-
ventional to Spatial and Temporal Applications. Springer.

Imene Mami and Zohra Bellahsene. 2012. A Survey of View Selection Methods. SIGMOD (2012).

James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh,
and Angela H Byers. 2011. Big Data: The Next Frontier for Innovation, Competition, and Pro-
ductivity. (2011).

Dominik Moritz, Danyel Fisher, Bolin Ding, and Chi Wang. 2017. Trust, but Verify: Optimistic
Visualizations of Approximate Queries for Exploring Big Data. CHI (2017).

Arnab Nandi, Cong Yu, Philip Bohannon, and Raghu Ramakrishnan. 2012. Data Cube Materializa-
tion and Mining over MapReduce. TKDE (2012).

Raymond T Ng, Alan Wagner, and Yu Yin. 2001. Iceberg-Cube Computation with PC Clusters.
SIGMOD (2001).

Supriya Nirkhiwale, Alin Dobra, and Christopher Jermaine. 2013. A Sampling Algebra for Aggre-
gate Estimation. VLDB (2013).

Christopher Olston, Edward Bortnikov, Khaled Elmeleegy, Flavio Junqueira, and Benjamin Reed.
2009. Interactive Analysis of Web-Scale Data. CIDR (2009).

Cicero AL Pahins, Sean A Stephens, Carlos Scheidegger, and Joao LD Comba. 2017. Hashedcubes:
Simple, low memory, real-time visual exploration of big data. TVCG (2017).

Niketan Pansare, Vinayak R Borkar, Chris Jermaine, and Tyson Condie. 2011. Online Aggregation

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: January 2016.



1:24 N. Kamat et al.

for Large Mapreduce Jobs. PVLDB (2011).

Olga Papaemmanouil, Yanlei Diao, Kyriaki Dimitriadou, and Liping Peng. 2016. Interactive Data
Exploration via Machine Learning Models. (2016).

Liping Peng, Enhui Huang, Yuqing Xing, Anna Liu, and Yanlei Diao. 2017. Uncertainty Sampling
and Optimization for Interactive Database Exploration. UMass TR (2017).

Luis L Perez and Christopher M Jermaine. 2014. History-Aware Query Optimization with Materi-
alized Intermediate Views. ICDE (2014).

Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why You Should Run
TPC-DS: A Workload Analysis. VLDB (2007).

Foster Provost, David Jensen, and Tim Oates. 1999. Efficient Progressive Sampling. SIGKDD
(1999).

Chengjie Qin and Florin Rusu. 2013. Parallel Online Aggregation in Action. SSDBM (2013).

Philipp Rosch and others. 2013. Optimizing Sample Design for Approximate Query Processing.
IJKBO (2013).

Kenneth A Ross, Divesh Srivastava, and S Sudarshan. 1996. Materialized View Maintenance and
Integrity Constraint checking: Trading Space for Time. SIGMOD (1996).

Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh Bhobe. 2000. Efficient and Extensible
Algorithms for Multi Query Optimization. SIGMOD (2000).

Carsten Sapia. 1999. On Modeling and Predicting Query Behavior in OLAP Systems. DMDW
(1999).

Sunita Sarawagi and Gayatri Sathe. 2000. i3: Intelligent, Interactive Investigation of OLAP Data
Cubes. SIGMOD (2000).

B. Shneiderman. 1984. Response Time and Display Rate in Human Performance with Computers.
CSUR (1984).

Lefteris Sidirourgos, Martin L Kersten, and Peter A Boncz. 2011. SciBORQ: Scientific Data Man-
agement with Bounds On Runtime and Quality. CIDR (2011).

Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yannis Kotidis. 2002. Dwarf:
Shrinking the Petacube. SIGMOD (2002).

A.J. Smith. 1978. Sequentiality and Prefetching. TODS (1978).

Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A System for Query, Analysis, and
Visualization of Multidimensional Relational Databases. TVCG (2002).

Farhan Tauheed, Thomas Heinis, Felix Schiirmann, Henry Markram, and Anastasia Ailamaki. 2012.
SCOUT: Prefetching for Latent Structure Following Queries. VLDB (2012).

D. Tunkelang. 2009. Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and
Services (2009).

Yi Wang, Linchuan Chen, and Gagan Agrawal. 2015a. Supporting Online Analytics with User-
Defined Estimation and Early Termination in a MapReduce-like Framework. Proceedings of the
2015 International Workshop on Data-Intensive Scalable Computing Systems (2015).

Yichuan Wang, Xin Liu, David Chu, and Yunxin Liu. 2015b. EarlyBird: Mobile Prefetching of
Social Network Feeds via Content Preference Mining and Usage Pattern Analysis. Proceedings
of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing (2015).

BP Welford. 1962. Note on a Method for Calculating Corrected Sums of Squares and Products.
Technometrics (1962).

Eugene Wu, Fotis Psallidas, Zhengjie Miao, Haoci Zhang, Laura Rettig, Yifan Wu, and Thibault
Sellam. 2017. Combining Design and Performance in a Data Visualization Management System.
CIDR (2017).

Sai Wu, Shouxu Jiang, Beng Chin Ooi, and Kian-Lee Tan. 2009. Distributed Online Aggregations.
VLDB (2009).

Fei Xu, Christopher Jermaine, and Alin Dobra. 2008. Confidence Bounds for Sampling-based
Group by Estimates. TODS (2008).

Osmar R Zaiane, Man Xin, and Jiawei Han. 1998. Discovering Web Access Patterns and Trends by
Applying OLAP and Data Mining Technology on Web Logs. Research and Technology Advances

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: January 2016.



SESAME 1:25

in Digital Libraries, 1998. ADL 98. Proceedings. IEEE International Forum on (1998).

Kai Zeng, Shi Gao, Jiaqi Gu, Barzan Mozafari, and Carlo Zaniolo. 2014. ABS: A System for
Scalable Approximate Queries with Accuracy Guarantees. SIGMOD (2014).

Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-Daniel Fekete, and Tim Kraska. 2016.
How Progressive Visualizations Affect Exploratory Analysis. TVCG (2016).

Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. 2001. On Supporting
Containment Queries in Relational Database Management Systems. SIGMOD (2001).

APPENDIX

A. Querying over Table Shards: The interactive nature of our use case necessitates approximation of
results by executing queries over a subset of the data — we use sharded tables for data subsetting. A
sharded table contains a subset of the rows of a SQL table — concatenation of all shards is equivalent
to the table. A sharded table is the atomic unit of data in our system: updates are performed at the
granularity of shards, and each session makes the assumption that the list of shards and the shards
themselves do not change. A sample of the data is constructed online by choosing random table
shards during run-time, allowing for random sampling. We now briefly discuss how our sharding
techniques maintain randomness in the samples, which is essential for obtaining meaningful error
estimates.

Random Samples and Sharding: A random sample needs to satisfy two criteria. The first criterion
states that every tuple should have the same probability of occurrence in the sample. The second
criterion states that all possible samples of a given size should be equally likely, and thus, inclusion
of a tuple in the sample should not affect the probability of inclusion of another [Cochran 2007].
Sesame randomizes the tuple sequence before splitting the data horizontally into shards, thereby
satisfying the first criterion. As tuple indexes are independent of one another due to randomization,
the second criterion is satisfied as well. This results in every shard being a random sample. Further,
as the union of random samples is a random sample, union of shards results in a random sample
as well. Note that the principled approach towards sampling involves computing separate samples
for each query, which is expensive and can require a full table scan. Thereby, to avoid correlation
due to groups of tuples or samples being used repeatedly, a common technique is to randomize the
underlying tuple sequence and create new samples periodically [Agarwal et al. 2013], which Sesame
employs.

B. Additional Time for Calculating Variance: The queries in Workloadgeq were run on 10 shards
using the in-memory PostgreSQL setup described in Section 5. Average time taken when using
SUM, AVERAGE, and COUNT was 989.5 ms, while it was 1529.2 ms when including VARIANCE as
well. Thus, inclusion of variance resulted in the computation causing an additional delay of 54.6%.
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