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Abstract—Computing interesting measures for data cubes and subsequent mining of interesting cube groups over massive datasets

are critical for many important analyses done in the real world. Previous studies have focused on algebraic measures such as SUM that

are amenable to parallel computation and can easily benefit from the recent advancement of parallel computing infrastructure such as

MapReduce. Dealing with holistic measures such as TOP-K, however, is non-trivial. In this paper we detail real-world challenges in

cube materialization and mining tasks on Web-scale datasets. Specifically, we identify an important subset of holistic measures and

introduce MR-Cube, a MapReduce based framework for efficient cube computation and identification of interesting cube groups on

holistic measures. We provide extensive experimental analyses over both real and synthetic data. We demonstrate that, unlike existing

techniques which cannot scale to the 100 million tuple mark for our datasets, MR-Cube successfully and efficiently computes cubes

with holistic measures over billion-tuple datasets.

Index Terms—Data Cube, Cube Materialization, Cube Mining, MapReduce, Holistic Measures
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1 INTRODUCTION

DATA cube analysis [11] is a powerful tool for analyz-
ing multidimensional data. For example, consider

a data warehouse that maintains sales information as:
〈city, state, country, day, month, year, sales〉

where (city, state, country) are attributes of the loca-
tion dimension and (day, month, year) are attributes
of the temporal dimension. Cube analysis provides the
users with a convenient way to discover insights from
the data by computing aggregate measures (e.g., total
sales) over all possible groups defined by the two dimen-
sions (e.g., overall sales for “New York, NY, USA” during
“March 2010”). Many studies have been devoted to
designing techniques for efficiently computing the cube [2],
[3], [5], [9], [12], [13], [18], [21].

There are two main limitations in the existing tech-
niques that have so far prevented cube analysis being
extended to an even broader usage such as analyzing
Web query logs. First, they are designed for a single ma-
chine or clusters with small number of nodes. Given the
rate at which data are being accumulated (e.g., terabytes
per day) at many companies, it is increasingly difficult to
process data with a single (or a few) machine(s). Second,
many of the established techniques take advantage of
the measure being algebraic [11] and use this property to
avoid processing groups with a large number of tuples.
Intuitively, a measure is algebraic if the measure of a
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CUBE ON location(ip), topic(query)
FROM ‘log.table’ as (user, ip, query)
GENERATE reach(user), volume(user)
HAVING reach(user) > 5

reach(user) := COUNT(DISTINCT(user))
volume(user) := COUNT(user)
location(ip) maps ip to [Country, State, City]
topic(query) maps query to [Topic, Category, Subcategory]

Fig. 1. Typical cubing task on a web search query

log, used to identify high-impact web search queries (for

details, see Sec. 3.) Data, dimensions and measures are
given as input. Unlike volume, reach is holistic, and hence

will typically fail or take an unreasonable amount of time to

compute with existing methods due to data size and skew,
further discussed in Sec. 4. MR-Cube efficiently com-

putes this cube using MapReduce, as shown in Sec. 6.

super-group can be easily computed from its sub-groups.
(E.g. SUM(a+b) = SUM(a) + SUM(b); Sec. 2 provides
a formal definition.) This allows parallelized aggregation
of data subsets whose results are then post-processed to
derive the final result. Many important analyses over
logs, however, involve computing holistic (i.e., non-
algebraic) measures such as the distinct number of users
or the top-k most frequent queries. An example of such a
query is provided in Fig. 1 (we will revisit this example
in detail in Sec. 3.)

Increasingly, such large scale data are being main-
tained in clusters with thousands of machines and ana-
lyzed using the MapReduce [8] programming paradigm.
Extending existing cube computation techniques to this
new paradigm, while also accommodating for holistic
measures, however, is non-trivial.

The first issue is how to effectively distribute the data
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such that no single machine is overwhelmed with an
amount of work that is beyond its capacity. With alge-
braic measures, this is relatively straight forward because
the measure for a large super-group (e.g., number of
queries in “US” during “2010”) can be computed from
the measures of a set of small sub-groups (e.g., number
of queries in “NY, US” during “March 2010”). For holistic
measures, however, the measure of a group can only be
computed directly from the group itself. For example, to
compute the distinct number of users who were from
“USA” and issued a query during “March 2010,” the list
of unique users must be maintained. For groups with
a large number of tuples, the memory requirement for
maintaining such intermediate data can become over-
whelming. We address this challenge by identifying an
important subset of holistic measures, partially algebraic
measures, and introducing a value partition mechanism
such that the data load on each machine can be con-
trolled. We design and implement sampling algorithms
to efficiently detect groups where such value partition is
required.

The second issue is how to effectively distribute the
computation such that we strike a good balance between
the amount of intermediate data being produced and the
pruning of unnecessary data.

We design and implement algorithms to partition the
cube lattice into batch areas and effectively distribute the
materialization and mining across available machines.

Main Contributions: To the best of our knowledge,
our work is the first comprehensive study on cube
materialization for holistic measures using the
MapReduce paradigm. In addition to describing
real world challenges associated with holistic cube
computation using MapReduce for Web-scale datasets,
we make the following main contributions:

• We formally introduce partially algebraic measures, an
important subset of holistic measures that are MapRe-
duce friendly.

• We propose two techniques, value partitioning and
batch area identification that effectively leverage the
MapReduce framework to distribute the data and
computation workload.

• We propose a three-phase cube computation algo-
rithm MR-Cube that employs these techniques to
successfully cube billion-tuple sized datasets, and op-
tionally surfaces interesting cube groups.

Extensive experimental analyses over real data demon-
strate that MR-Cube significantly outperforms existing
techniques in terms of efficiency and scalability.

2 PRELIMINARIES

We begin by introducing the basic formalisms used in
the rest of the paper, most of which follow the original
notions described in [11] for Data Cube and [8] for
MapReduce. We explain each concept through a running

example, which is based on a real log analysis task. The
same example will also apply to the data set in our
experiments.

As shown in Fig. 2, raw data is maintained as a set of
tuples. Each tuple has a set of raw attributes, such as ip
and query.
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Fig. 2. Raw dataset, as maintained on disk.
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Fig. 3. Derived dataset, by converting ip and query using

classifiers.

For many analyses, it is more desirable to map
some raw attributes into a fixed number of derived
attributes through a mapping function. For example,
ip can be mapped to city, state, and country.
Similarly, query can be mapped to sub-category,
category, and topic. We assume such mappings are
accomplished by functions that are provided by the
user. Fig. 3 illustrates the derived tuples after the raw
attributes have been mapped.

Dimension attributes & Cube lattice
The term dimension attributes refers to the set of
attributes that the user wants to analyze. Based on those
attributes, a cube lattice can be formed representing
all possible grouping(s) of the attributes. For example,
Fig. 4 illustrates a cube lattice (only a fraction of the
lattice is displayed in detail) where the dimension
attributes include the six attributes derived from ip

and query.

!"#"$"

!%&'()$" <state> <category> 

<topic,category> <city,category> <state,topic> 
Full lattice 

Fig. 4. Cube Lattice using a flat set of 6 dimensions,
yielding 64 cube regions. 7 are shown in detail. Note

that only 3 of the 7 depicted regions are valid: < ∗ >,

< topic, category > and < topic >.

Cube group & cube region
Each node in the lattice represents one possible
grouping/aggregation. For example, the node
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〈∗, ∗, ∗, topic, category, ∗〉 (displayed in short form
as 〈topic, category〉) represents all groups formed by
aggregating (i.e., groupby) on topic and category.
Each group in turn contains a set of tuples satisfying the
same aggregation value. In this paper, we use the term
cube region to denote a node in the lattice and the term
cube group to denote an actual group belonging to the
cube region. For example, tuples with id e1 and e2 both
belong to the group 〈∗, ∗, ∗, Shopping, Phone, ∗〉, which
belongs to the region 〈∗, ∗, ∗, topic, category, ∗〉1. (A
cube group is considered to belong to a cube region if
the former is generated by the aggregation condition of
the latter.) In another words, a cube region is defined by
the grouping attributes while a cube group is defined
by the values of those attributes.

Each edge in the lattice represents a parent/child
relationship between two regions, where the group-
ing condition of the child region (i.e., the one
pointed to by the arrow) contains exactly one more
attribute than that of the parent region. A par-
ent/child relationship can be similarly defined be-
tween cube groups. For example, the group representing
the tuples of 〈∗, Michigan, USA, Shopping, Phone, ∗〉
is a child of the group representing the tuples of
〈∗, ∗, USA, Shopping, Phone, ∗〉.
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Fig. 5. 6 attributes forming 2 dimension hierarchies

query topic and location, with cardinalities and example
values for each.

An important observation is that not all regions
represent valid aggregation conditions. For example, the
region 〈∗, ∗, city, ∗, category, ∗〉 groups tuples by the
same city (and category), regardless of countries and
states. This means tuples from Delhi, NCR, India will
be grouped together with tuples from Delhi, Michigan,
USA—a scenario that is usually unintended by the user.
This is caused by inherent hierarchical relationships
among the attributes. As illustrated in Fig. 5, city,
state, country form a dimension hierarchy, with
city at the finest level and country at the broadest
level. A region that groups on city needs to group on
state and country as well to become valid. Indeed,
while there are 8 possible aggregation conditions for the

1. We overload the use of symbol “*” here: it denotes both not
grouping by this attribute for cube region and any value of this attribute
for cube group.
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Fig. 6. Cube Lattice when considering 6 attributes in 2

dimension hierarchies. All cube regions are valid.

three attributes, only 4 are valid: 〈country, state, city〉,
〈country, state, ∗〉, 〈country, ∗, ∗〉, 〈∗, ∗, ∗〉. By grouping
attributes into hierarchies and eliminating invalid cube
regions from the lattice in Fig. 4, we obtain a more
compact hierarchical cube lattice as shown in Fig. 6.
Note that the idea of a hierarchical cube lattice is not
novel; it is in fact similar in spirit to the description
in original data cube paper [11]. Here, the cube region
〈state, topic〉 corresponds to the original cube region
〈∗, state, country, ∗, ∗, topic〉2. Hierarchical cubes are
often significantly smaller than their flat counterparts.

Cubing Task and Measures
Given the hierarchical cube, the task of cube
computation is to compute given measures for all
valid cube groups, where a measure is computed by
an aggregation function based on all the tuples within
the group. Example measures include SUM and TOP-K.
Typically, measures are characterized by the following
two properties.

Algebraic & Holistic: Given a group G and any
mutually exclusive partition of G, {Gi | i = 1...k} (i.e.,
⋃k

i=1(Gi) = G and ∀ij, i 6= j, Gi

⋂
Gj = ∅), a measure

M is algebraic if ∃ F, G such that M(G) = F(H(G1), . . . ,

H(Gk)), where function H returns an n-tuple and n is
a constant for all |Gi|. It is important to note that G

can be partitioned in multiple ways and the same F

and G apply to all possible partitions. A measure M is
holistic if no such functions F and G exist for all possible
partitions. Examples of algebraic functions are SUM and
STD_DEV, and examples of holistic functions are TOP-K,
MODE and MEDIAN.

Monotonic: A numerical measure is monotonic if for
any pair of cube groups such that Gc is a child of
Gp, M(Gc) ≥ M(Gp) (monotonically decreasing) or
M(Gc) ≤ M(Gp) (monotonically increasing). Examples
of monotonic measures are REACH and COUNT.

MapReduce
MapReduce is a shared-nothing parallel data processing

2. i.e., we use 〈state〉 as a shorthand for 〈∗,state,country〉.
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paradigm that is designed for analyzing large amounts
of data on commodity hardware. Hadoop is an open-
source implementation of this framework.

During the Map phase, the input data is distributed
across the mapper machines, where each machine then
processes a subset of the data in parallel and produces
one or more 〈key, value〉 pairs for each data record.
Next, during the Shuffle phase, those 〈key, value〉 pairs
are repartitioned (and sorted within each partition) so
that values corresponding to the same key are grouped
together into values {v1, v2, ...}. Finally, during the Re-
duce phase, each reducer machine processes a subset
of the 〈key, {v1, v2, ...}〉 pairs in parallel and writes the
final results to the distributed file system. The map and
reduce tasks are defined by the user while the shuffle is
accomplished by the system. Fault-tolerance is inherent
to a MapReduce system, which detects failed map or
reduce tasks and reschedules the tasks to other nodes in
the cluster.

3 EXAMPLE ANALYSIS TASKS

This paper aims to address challenges with the following
core task: given a large amount of data, a holistic
measure and dimension hierarchies, efficiently compute
the measure of all cube groups that satisfy the pruning
condition (if any), using the MapReduce infrastructure.
In this section, we provide two real-world analysis tasks,
for which cube computation is the core first step. They
are representative of typical tasks that analysts demand,
and will be used throughout the paper. Both tasks
involve holistic measures: reach for the former and
top-k for the latter. The schema, data and lattice for
both tasks are the same as our running example in Sec. 2.

Example 1 (Coverage Analysis): Given the location and
topic hierarchies, compute volume and reach of all cube
groups whose reach is at least 5. Highlight those cube
groups whose reach is unusually high compared with their
volume. Here, measure volume is defined as the number
of search tuples in the group, while reach is defined as the
number of unique users issuing those searches.2

This analysis is inspired by the need to identify query
topics that are issued relatively infrequently by the users,
but cover a large number of users: these queries are often
missed by traditional frequency based analyses because
of their relative low volume, even though those query
topics can in fact have an impact on a very large user
population. A SQL-style specification corresponding to
the cubing task for this analysis is shown in Fig. 1, while
the dimension hierarchies and hierarchical cube lattice
are shown in Fig. 5 and Fig. 6 respectively.

Example 2 (Top-k Query Analysis): Given the location
and topic hierarchies, compute top-5 frequent queries for all
cube groups. Highlight those cube groups whose top-k queries
are most infrequent amongst their sibling groups.2

This analysis aims to discover location bias for various
query topics. For example, the top political queries in

Austin can be very different from those in other cities
in Texas, which in turn can be different from those in
the entire USA. While the core focus of our work is on
materialization of the data cube, we will also touch upon
the highlighting of interesting cube groups in Sec. 5.5.

4 CHALLENGES

The CUBE operation can be expressed in high-level
MapReduce languages (e.g., Pig [19]) as a disjunction of
groupby queries. A query optimizer would then (ide-
ally) combine all the queries into a single MapReduce
job. Algo. 1 represents this combined cube computation.
Intuitively, this naive algorithm divides the full cubing
task into a set of aggregation tasks, one for each cube
group, and distributes them for computation using the
MapReduce framework. In particular, the function R(e)

extracts from the tuple e the values of the groupby
attributes specified by the cube region R.

For example, given the cube lattice in Fig. 6, the search
tuple e1 = 〈091203, u1, 64.97.55.3, iPhone〉 is mapped to
16 groups (one per region in the cube), including the
smallest group 〈Ann Arbor, Smart〉 and the broadest
group 〈∗, ∗〉. Each reducer then computes the measures
for its assigned groups by applying the measure func-
tion. Measure-specific optimization can be incorporated
into the naive algorithm to reduce amount of inter-
mediate data. As an example, for coverage analysis
(Example 1), to compute the measure reach, we only
need the attribute uid. Therefore the mapper can emit
just e.uid instead of the full tuple.

Algorithm 1 Naive Algorithm

MAP(e)

1 # e is a tuple in the data
2 let C be the Cube Lattice
3 for each Region R in C

4 do k = R(e);

5 EMIT k ⇒ e

REDUCE/COMBINE(k, {e1, e2, ...})

1 let M be the measure function
2 EMIT k⇒ M({e1, e2, ...})

It should be noted that despite its simplicity, the Naive
algorithm fares quite well for small datasets. As we
will see in Sec. 6, it outperforms its competitors for
such datasets due to the extremely low overhead costs.
However, as the scale of data increases, we encounter
two key challenges that cause this algorithm to perform
poorly and eventually fail: size of intermediate data and
size of large groups. We describe these challenges next.

4.1 Size of Intermediate Data

The first challenge arises from the large size of in-
termediate data being generated from the map phase,
which measures at |C| × |D|, where |C| is the number
of regions in the cube lattice and |D| is the size of the
input data. Since |C| increases exponentially with both



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2012 5

the number and depth of dimensions to be explored, the
naive approach can quickly lead to the system running
out of disk space during the map phase or struggling
through the shuffle (i.e., sort) phase.

4.2 Size of Large Groups

The second challenge arises from cube groups belonging
to cube regions at the bottom part of the cube lattice,
such as 〈USA, Shopping〉 or even 〈∗, ∗〉 (i.e., the cube
group containing all tuples). The reducer that is assigned
the latter group essentially has to compute the measure
for the entire dataset, which is usually large enough to
cause the reducer to take significantly longer time to
finish than others or even fail. As the size of the data
increases, the number of such groups also increases. We
call such groups reducer-unfriendly. A cube region with
a significant percentage of reducer-unfriendly groups is
called reducer-unfriendly region.

For algebraic measures, this challenge can addressed
by not processing those groups directly: we can first
compute measures only for those smaller, reducer-
friendly, groups, then combine those measures to pro-
duce the measure for the larger, reducer-unfriendly,
groups. Such measures are also amenable to mapper-
side aggregation which further decreases the load on
the shuffle and reduce phases. For holistic measures,
however, measures for larger groups can not be as-
sembled from their smaller child groups, and mapper-
side aggregation is also not possible. Hence, we need a
different approach.

5 THE MR-CUBE APPROACH

We propose the MR-Cube approach that addresses the
challenges of large scale cube computation with holistic
measures. The complexity of the cubing task depends on
two aspects: data size, which impacts both intermediate
data size and the size of large groups, and cube lattice size,
which impacts intermediate data size and is controlled
by the number/depth of dimensions. We deal with those
complexities in a two-pronged attack: data partitioning
and cube lattice partitioning. Specifically, our goal is to
divide the computation into pieces such that no reducer
has to deal with extremely large data groups, and the
overall intermediate data size is controlled. A pictorial
representation of the overall MR-Cube process is shown
in Fig. 7, for easy reference to the details in this section.

5.1 Partially Algebraic Measures

We begin by identifying a subset of holistic measures
that are easy to compute in parallel than an arbitrary
holistic measure. We call them partially algebraic measures.
This notion is inspired by common ad-hoc practices for
computing a single holistic measure from an extremely
large number of data tuples. For example, to compute
the measure reach (i.e., unique number of users) of
billions of search tuples, a known practical approach is
to first group the tuples by the user id (uid) and then

count the number of such groups produced. It is as if the
holistic measure has become algebraic for the attribute
uid. Formally, we have:

Definition 1 (Partially Algebraic Measure):
Given a cube group G, an attribute a, and any mutually

exclusive partitions of G, {Gi|i = 1...k} (i.e.,
⋃k

i (Gi) = G

and ∀ij, i 6= j, Gi

⋂
Gj = ∅), such that Gi.a

⋂
Gj.a =

∅. An aggregate measure M is partially algebraic on a if
∃ F, H, s.t. M(G) = F(H(G1), . . . , H(Gk)) where H returns
an n-tuple and n is constant regardless of all |Gi|. We call
a the algebraic attribute of M.
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Fig. 7. Overview of the MR-Cube system: A user spec-

ifies dimension hierarchies and a measure. An anno-
tated cube lattice is constructed using a data sample to

estimate region cardinalities: reducer-unfriendly regions

(Sec. 4) are value partitioned (Sec. 5.2). Regions are then
combined into batch areas (Sec. 5.3). In Cube Material-

ization (Algo. 2), tuples are mapped to each batch area.

Reducers evaluate the measure for each batch area.
Partitioned measures are merged in a post-processing

step. The cube is loaded into a DB for future exploration.

Unlike traditional algebraic measures (see Sec. 2),
which can be computed from any mutually exclusive
sub-groups (Gi

⋂
Gj = ∅), partially algebraic measures

can be computed from only those sub-groups that are
not only mutually exclusive on the full tuple, but also
mutually exclusive after projecting on the algebraic at-
tribute (Gi.a

⋂
Gj.a = ∅). For example, consider reach,

which is a holistic measure that is partially algebraic
on attribute uid, and the large group 〈USA, ∗〉, which
contains all searches initiated within USA. If the par-
titioning is done arbitrarily, the measure of the whole
group can not be computed from the smaller sub-groups,
since uids can be shared across different sub-groups.
However, if we split the whole group into sub-groups
based on the uid (i.e., each sub-group can be consid-
ered as 〈USA, ∗, hash(uid)〉 where hash(uid) hashes the
uid), we can then compute the reach of 〈USA, ∗〉 by
summing up the reach for those sub-groups.
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We note that Definition 1 can be extended to measures
computed based on multiple attributes. Again, consider
a cube analysis task with location and topic hierarchies.
To compute top-k (query, user) pairs per cube group,
the sub-groups needs to be partitioned on both uid and
query, i.e., a Composite Partially Algebraic Measure.

Many holistic measures turn out to be partially alge-
braic, including the above mentioned reach and top-k

frequent queries. To detect if a holistic measure M is
partially algebraic, we adopt the following detection
principle: if there exists an aggregation A based on
attribute a and an algebraic measure M ′, such that
M(D) = M ′(A(D)), where D is the original data, then
M is partially algebraic on attribute a. For the measure
reach, the aggregation is ‘groupby uid’ and the alge-
braic measure is count.

In this work, we assume the algebraic attribute is
either provided by the analyst or detected by the sys-
tem for a few frequently used measures. Automatically
deciding whether a holistic measure is also partially
algebraic and then detecting its algebraic measure is by
itself an interesting and hard problem. We leave this as
part of our future work.

We call this technique of partitioning large groups
based on the algebraic attribute value partitioning, and
the ratio by which a group is partitioned the partition
factor. In the next section, we describe how value par-
titioning leverages the algebraic attribute of a partially
algebraic measure to efficiently compute the cube over
large datasets. We note that our work is the first to focus
on this practically important subset of holistic measures.

5.2 Value Partitioning

An easy way to accomplish value partitioning is to
run the naive algorithm, but further partition each cube
group based on the algebraic attribute. However, such an
approach is problematic. The number of map keys being
produced is now the product of the number of groups
and the partition factor (instead of just the former in
Algo. 1). This can put a significant burden on the shuffle
phase. Further, many of the original groups contain a
manageable number of tuples and partitioning those
groups is entirely unnecessary. Even with large, reducer-
unfriendly groups, some will require partitioning into a
large number of sub-groups (i.e., large partition factor),
while others will only need to be partitioned into a few
sub-groups.

Thus, we want to perform value partitioning only
on groups that are likely to be reducer-unfriendly and
dynamically adjust the partition factor. One approach
is to detect reducer-unfriendly groups on the fly and
perform partitioning upon detection. This is undesirable
as it requires us to maintain information about groups
visited so far at each mapper, which can overwhelm
the mapper. Another approach is to scan the data and
compile a list of potentially reducer-unfriendly groups
for which the mapper will perform partitioning. This
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Fig. 8. Value partitioned lattice. The cube lattice is divided
into reducer-friendly and reducer-unfriendly areas. Each

reducer-unfriendly region is then value partitioned using
a partitioning factor estimated from sampling.

is again undesirable as checking against a potentially
large list slows down the mapper. We observe that dif-
ferent regions in the cube lattice have different reducer-
unfriendliness depending on their size. Intuitively, re-
gions at the bottom of the lattice that contain few
groups (e.g., 〈∗, ∗〉 or 〈country, ∗〉) are most likely to con-
tain reducer-unfriendly groups, while regions containing
many groups have mostly reducer-friendly groups.

As a result, we adopt a sampling approach where we
estimate the reducer-unfriendliness of each cube region
based on the number of groups it is estimated to have,
and perform partitioning for all groups within the list
of cube regions (a small list) that are estimated to be
reducer-unfriendly.

This sampling is accomplished by performing cube
computation using the naive algorithm on a small ran-
dom subset of data, with count as the measure. For each
discovered group, this gives us the number of tuples
in the sample it contains. Based on Proposition 1, we
declare a group G to be reducer-unfriendly if we observe
more than 0.75rN tuples of G in the sample, where N

is the sample size and r = c
|D|

denotes the maximum
number of tuples a single reducer can handle (c) as a
percentage of the overall data size (|D|). (See Proposi-
tion 1.) We declare a region to be reducer-unfriendly
if it contains at least one reducer-unfriendly group. In
addition, let the sample count of the largest reducer-
unfriendly group in the region be s, we annotate the
region with the appropriate partition factor, an integer
that is closest to s

rN
3. Fig. 8 illustrates the cube lattice

of Fig. 6 after it is annotated by the sampling process:
the lattice is divided into reducer-friendly and reducer-
unfriendly parts and for each reducer-unfriendly region,
a partition factor is assigned.

Proposition 1: Let |D| denote the total number of tuples
in the data, c denote the reducer limit (i.e., the maximum

3. Intuitively, 1
r

is the partition factor required for groups containing
all the tuples, and s

N
is the relaxation factor for groups with a subset

of the tuples.
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number of tuples a reducer can handle), and r = c
|D|

. Let
N denote the sample size. If a cube group G contains less
than 0.75rN tuples in the sample, then the probability
of G being a reducer-unfriendly group (i.e., containing
more than c tuples) ProbUF(G) ≤ 5% if N > 100

r
.

Proof: We can derive the probabilities based on Chernoff
Bound [6]. Consider cube group G which contains c

tuples (t1, t2, ...tn), where c is the reducer limit and
r = c

|D|
. The random sampling process can be viewed

as a series of Bernoulli trials on each tuple in G with
Pr[ti = 1] = N

|D|
, where N is the sample size. The

expected number of tuples in G appearing in the sample
is E[G] = cN

|D|
= rN. Let X denote the number of tuples

in G appearing in the sample. According to the general
case Chernoff Bound [6], for any δ > 0, we have:

Pr[X < (1 − δ)rN] < e−rN δ
2

2

Let δ = 0.25, we have: Pr[X < 0.75rN] < e−0.031rN. If
N > 100

r
, then Pr[X < 0.75rN] < 5%. This means if G con-

tains at least c tuples, the probability of observing less
than 0.75rN tuples in G in the sample is less than 5% if
the sample size is large enough (i.e., > 100

r
). Conversely,

if we observe less 0.75rN tuples in G, then the probability
of G containing more than c tuples (ProbUF(G)) is less
than 5% if the sample size is large enough. 2

A reducer in our setting can easily handle 1M tuples.
Therefore, for data with 1B tuples, the sample size N

can be as small as 100K and easily manageable by the
naive algorithm. In practice, we increase N to 2M, which
allows us to have a much more accurate estimation or
handle up to 20B tuples.

Finally, we note that extreme data skew can occur in
some datasets, which will cause value partitioning to
be applied to most of the cube regions. Addressing this
issue is part of our future work and we discuss some
initial thoughts in Sec. 8.

5.3 Batch Areas

Given the annotated cube lattice, we can again directly
apply the naive algorithm, process each cube group
independently with the added safeguard that partitions
the groups that belong to a reducer-unfriendly region.
This partially alleviates the problem of large intermedi-
ate data size. However, each tuple is still duplicated at
least |C| times. Furthermore, another significant draw-
back of the naive approach is its incompatibility with
pruning for monotonic measures, i.e., each cube group
is processed independent of its parent group, we can no
longer prune a group’s children based on the HAVING

conditions such as those specified in Fig. 1.
To address those problems, we propose to combine

regions into batch areas. Each batch area represents
a collection of regions that share a common ancestor
region. Mappers can now emit one key-value pair per
batch for each data tuple; thus drastically reducing the
amount of intermediate data. Reducers, on the other

hand, instead of simply applying the measure function,
execute a traditional cube computation algorithm over
the set of tuples using the batch area as the local
cube lattice. A batch area typically contains multiple
regions with parent/child relationships, groups can thus
be pruned based on monotonic measures, assuming a
pruning condition is specified, and the cube computation
algorithm adopted can take advantage of that. One such
algorithm is the Bottom Up Cubing Algorithm (BUC) [3],
which we adopt4. Since the core cubing algorithm being
executed on a single reducer is self-contained, BUC can
be replaced with an algorithm of choice if needed. We
also note here that if a group has been value partitioned,
then monotonicity-based pruning can no longer apply
since the measure for the entire group may satisfy the
HAVING conditions even though the measure for each
individual partition may not.

Forming batch areas for reducer-unfriendly regions is
straightforward: we simply combine regions based on
their partition factors. Forming batch areas for reducer-
friendly regions however, requires some thought.

A key determinant of intermediate data size is the
overall number of derived attributes to be retained for
the reduce phase. As an example, for batch area b5 in
Fig. 9, three derived attributes (city, state, topic) need
to be maintained for each tuple. The lower the number of
total derived attributes need to maintained, the smaller
the size of the intermediate data. Furthermore, we would
like to encourage that batch areas have uniform comple-
tion times, since any skew can impact the full utilization
of reducers. Based on these observations, we formulate
the batch areas identification problem as the following:

Definition 2 (Batch Areas Identification): Given the
set of reducer-friendly regions C ′ in the cube lattice and
let (Ri ≺ Rj) indicating the parent-child relationship (Rj

being the parent) between two regions in the whole
cube lattice, assign each R ∈ C ′ into one of the mutually
exclusive set of batch areas (B1, B2, ..., Bk) such that the
following constraints are satisfied:

• ∀R ∈ C ′ with at least one parent region in C ′, R ∈
Bi ⇒ ∃R ′′, R ≺ R ′′, R ′′ ∈ Bi;

• ∀R1, R2 ∈ C ′, R1 ≺ R ′

1, R2 ≺ R ′

2, R ′

1, R ′

2 /∈ C ′, R1 ∈
Bi ⇒ R2 ∈ Bj, i 6= j;

• ∀ij, i 6= j, |(|Bi| − |Bj|)| ≤ 2

Intuitively, the three constraints state that: i) a region
with at least one parent that is also reducer-friendly must
belong to a batch area that contains at least one of its
parents; ii) no two regions whose parents are reducer-
unfriendly can belong to the same batch area; iii) the
difference in the number of regions of two batch areas
can not be more than 2, a heuristic used to balance the
workload of each batch area.

Since each batch area will effectively require an inde-
pendent projection of the dataset, they directly impact

4. While there are more recent algorithms such as Star-Cubing [29],
they require the measure to be algebraic and are therefore not appli-
cable to our analysis tasks.
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the size of intermediate data, and hence overall perfor-
mance, as discussed in Sec. 4.1. Thus, it is important
to construct batch areas that minimize the amount of
intermediate data generated.

A viable set of batch areas are derived by first identi-
fying the lowermost region in each batch area. These are
called the heads of each batch area. For reducer-friendly
regions, all regions that do not have reducer-friendly
parents are considered heads. Additionally, reducer-
unfriendly regions are also allocated to batch areas,
with the constraint that the value partitioning be con-
sistent within each batch. Thus, the lowermost reducer-
unfriendly regions with disparate value partitionings are
considered heads.

Given the head regions signifying each batch area, we
now allocate the non-head regions to each batch area
while observing the three constraints stated above. How-
ever, despite these constraints, there are different batch
area allocations possible for a lattice. For smaller lattices,
it is feasible to pick the solution with the lowest total
cost, i.e., min(

∑
i cost(Bi)) by exhaustive enumeration.

The cost function for reflects the amount of intermediate
data produced per batch area, and is defined as the count
of set of attributes required by that batch area. For larger
lattices, the search space for an ideal set of batch areas
is exponential to the size of the lattice. To generate an
acceptably good solution, we perform a search over the
space of all possible batch area allocations, by allocating
the non-head regions to batches in a depth-first manner.
In addition to the constraints stated above, we bound
our search by first finding an acceptably good solution
(i.e. a batched lattice that meets the constraints above)
and then annealing the expectation of finding a lower
cost solution over time.

The combined process of identifying and value-
partitioning unfriendly regions followed by the parti-
tioning of regions into batches is referred to as AN-
NOTATE in Algo. 2. The lowest cost annotated lattice is
presented in Fig. 9.

5.4 Cube Materialization

As shown in Algo. 2, an annotated lattice is generated
and then used to perform the main MR-CUBE-MAP-
REDUCE.

In Fig. 10 we present a walkthrough of MR-Cube over
our running example. Based on the sampling results,
cube regions 〈∗, ∗〉 and 〈country, ∗〉 have been deemed
reducer-unfriendly and require partitioning into 10 parts.
We depict materialization for 2 of the 5 batch areas, b1

and b5. For each tuple in the dataset, the MR-CUBE-MAP

emits key:value pairs for each batch area, denoted by red
◦ (b1) and blue ⋄ (b5). In required, keys are appended
with a hash based on value partitioning, e.g. the 2 in
〈∗, ∗〉, 2 : u2, usa. The shuffle phase then sorts them by
key, yielding 4 reducer tasks.

The BUC Algorithm is run on each reducer, and the
cube aggregates are generated. The value partitioned

reducer- 
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Fig. 9. Annotated Cube Lattice. Each color in the lat-

tice indicates a batch area, b1...b5. The reducer-friendly
blocks are grouped into three batch areas to exploit

pruning and reduce intermediate data size. Two of the
reducer-unfriendly regions are value partitioned on uid

into 10 partitions.

Algorithm 2 Overall MR-Cube Algorithm

MR-CUBE(Cube Lattice C, Dataset D, Measure M)

1 Dsample = SAMPLE(D)

2 RegionSizes R = ESTIMATE-MAPREDUCE(Dsample, C)

3 Ca = ANNOTATE(R, C) # value part. & batching
4 while (D)

5 do R← R ∪ MR-CUBE-MAPREDUCE(Ca, M, D)

6 D← D ′ # retry failed groups D’ from MR-Cube-Reduce

7 Ca ← INCREASE-PARTITIONING(Ca)

8 Result← MERGE(R) # post-aggregate value partitions
9 return Result

Algorithm 3 MR-Cube Phase 1: Annotation MapReduce

ESTIMATE-MAP(e)

1 # e is a tuple in the data
2 let C be the Cube Lattice;
3 for each ci in C

4 do EMIT (ci, ci(e)⇒ 1) # the group is the secondary key

ESTIMATE-REDUCE/COMBINE(〈r,g〉, {e1, e2, ...})

1 # 〈r, g〉 are the primary/secondary keys
2 MaxSize S← {}

3 for each r, g

4 do S[r]← MAX(S[r], |g|)

5 # |g| is the number of tuples {ei, ..., ej} ∈ g

6 return S

groups representing 〈∗, ∗, 1〉 are merged during post-
processing to produce the final result for that group,
〈∗, ∗, 2〉.

Note that if a reducer fails due to wrong estimation
of group size, all the data for that group is written back
to the disk and follow-up MapReduce jobs are then run
with more aggressive value partitioning, until the cube is
completed. It should be noted that in practice, a follow-
up job is rarely, if at all, needed.
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Fig. 10. Walkthrough for MR-Cube with reach as measure, as described in Sec. 5.4. Both the Map and Reduce

stages take the Annotated Cube Lattice(Fig. 9) as a parameter. Walkthrough is shown only for batch areas b1 (denoted

by red ◦ on tuples) & b5 (denoted by blue ⋄).

Following the core materialization step, all value par-
titioned groups need to be aggregated to compute the
final measures. Algo. 5 details phases of the aggregation
MapReduce. It should be noted that this step is ex-
tremely lightweight due to the fact that the aggregation
is a simple summation requiring O(1) memory and is
algebraic in nature, allowing for the use of combiners.

Algorithm 4 MR-Cube Phase 2: Materialization MapReduce

MR-CUBE-MAP(e)

1 # e is a tuple in the data
2 let Ca be the Annotated Cube Lattice
3 for each bi in Ca.batch areas
4 do s← bi[0].partition factor
5 EMIT (e.SLICE(bi[0]) + e.id%s ⇒ e)

6 # value partitioning: ‘e.id % s’ is appended to primary key

MR-CUBE-REDUCE(k, V)

1 let Ca be the Annotated Cube Lattice
2 let M be the measure function
3 cube← BUC(DIMENSIONS(Ca, k), V, M)

4 EMIT-ALL (k, cube)

5 if (MEMORY-EXCEPTION)

6 then D ′ ← D ′ ∪ (k, V)

Algorithm 5 MR-Cube Phase 3: Aggregation MapReduce

AGGREGATION-MAP(g, p, m)

1 # g, p, m are group label, partition id & measure value
2 EMIT (g ⇒ m)

AGGREGATION-COMBINE/REDUCE(g, M)

1 # key: group label g & measures M

2 EMIT(g,
∑

Mi)

5.5 Cube Mining

As discussed previously in Sec. 2, the highlighting of
cube groups that may be interesting to the user is
quite desirable. Materializing the cube (i.e., computing
measures for all cube groups satisfying the pruning
conditions) is often only the first step in the process
of identifying interesting cube groups. Such tasks are
trivial when the size of the full cube is tenable and

when the interestingness can be defined as a simple
value predicate. However, analysts often require more
complex measures of interestingness. For example, the
query “which Michigan city had the highest reach for each
product category?” requires a comparison of groups in the
〈city, category〉 along the city dimension. We formally
define interesting groups as follows:

Interesting Group: A group Gi is said to be interesting
if the measure for that group is higher than any of its
sibling groups Gj with respect to a dimension d, i.e.
∃d : M(Gi) > M(Gj), ∀Gj. Groups Gi and Gj are siblings
if they belong to the same region and differ in dimension
values only on the dimension d.

The distributed mining of data cubes poses an additional
set of challenges. Since the interestingness of a group
is defined relative to its sibling groups, this requires
that all siblings be fully materialized and available on
the same node. This breaks the ability to distribute
computation to multiple nodes. Due to holistic measures,
value partitioning and batch areas, it is unfeasible to
perform sibling comparisons of groups in a distributed
manner. As a solution to this, we introduce cube mining
as a separate MapReduce that can be integrated with the
aggregation phase post-materialization.

In Algo. 6 we introduce the cube mining MapReduce.
It takes the partially materialized cube from Algo. 4 as
input. By using the parent group label as the primary
key and the group label as the secondary key, measures
are clustered based on the parent group level, while
ensuring sortedness on the group label. This allows a
one-pass discovery of the most interesting group for each
parent group–dimension combination.

Our mining MapReduce faces scaling issues similar
to that of materialization. In the event of a cube with
large number of parent group–dimension pairs, the in-
termediate shuffle phase can get overwhelmed. Here,
we can apply the batch areas technique discussed in
Sec. 5.3. Additionally, the secondary sort overwhelm the
shuffle phase for parents with a large number of child
groups. To remedy this, one can use value partitioning,
as discussed in Sec. 5.2, with the difference that the
partitioning factor be determined on the group level
using sketches, as described in Sec. 8.
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Algorithm 6 MR-Cube Phase 3: Mining MapReduce

MINING-MAP(g, p, m)

1 # g, p, m are group label, partition id & measure value
2 for each parent pi, dimension di, in PARENTS(g)

3 do EMIT ((pi, di), g ⇒ m)

4 # g is the secondary key

MINING-COMBINE(((p, d), V < g, m >))

1 for each group gi in V

2 do EMIT ((p, d), gi ⇒
∑

mj : mj ∈ gi)

MINING-REDUCE((p, d), V < g, m >)

1 # key: parent p & dimension d

2 # values: measures m ordered by 2dary key, group g

3 gbest = null
4 mbest = null
5 for each group gi, measure mj ∈ gi, in V

6 do if (
∑

mj > mbest)

7 then gbest = gi

8 mbest =
∑

mj

9 EMIT(p, d, gbest, mbest)

By using the above algorithms, it is now feasible
to perform both large-scale cube materialization and
mining in the same distributed framework. It should be
noted that the highlighting of interesting cube groups
is strictly optional and not part of the core MR-Cube
cube materialization algorithm. Further, this process can
be simultaneously run with the post-aggregation step of
MR-Cube shown in Algo. 5, thereby reducing the need
for a separate MapReduce step.

6 EXPERIMENTAL EVALUATION

We perform the experimental evaluation on a production
Yahoo! Hadoop 0.20 cluster as described in [25]. Each
node has 2×Quad Core 2.5GHz Intel Xeon CPU, 8GB
RAM, 4×1TB SATA HDD, and runs RHEL/AS 4 Linux.
The heap size for each mapper or reducer task is set to
4GB. All tasks are implemented in Python and executed
via Hadoop Streaming. Similar to [1], we collect results
only from successful runs, where all nodes are available,
operating correctly, and there is no delay in allocating
tasks. We report the average number from three success-
ful runs for each task.

6.1 Experimental Setup

6.1.1 Datasets

We adopt two datasets. The Real dataset contains real
life click streams obtained from query logs of Ya-
hoo! Search. We examined clicks to Amazon, Wikipedia
and IMDB on the search results. For each click tuple,
we retain the following information: uid, ip, query, url.
We establish three dimensions containing a total of six
levels. The location dimension contains three levels (from
lowest to highest, with cardinalities): city(74214) →
state(2669) → country(235) and is derived from ip.

The time dimension contains two levels: month(6) →
day(42). The gender dimension contains only one level,
gender(3), and is derived from the user’s profile infor-
mation. This dataset in full contains 516M click tuples for
a size of 55GB. The number of unique users and queries
are in the range of tens of millions.

We also generate the synthetic Example dataset, which
has been our running example and contains 1B tuples.
Attributes and dimension hierarchies of this dataset are
shown in Fig. 5. The probability distributions used to
spread the attribute values across the tuples are: Normal
distribution for , Zipf distribution for query, Gaussian
distribution for city and Uniform distribution for time.
The parameters for the distributions are chosen based
on prior studies [27], [28]. The full dataset is called
Example-1B and amounts to 55GB on disk.

6.1.2 Cube Materialization Tasks

We focus on two cube computation tasks shown in Sec. 3:
computing user reach for the coverage analysis and
computing top-k queries for the top-k analysis. The first
measure computes the number of distinct users within
the set of tuples for each cube group. It is monotonic
and holistic, but partially algebraic on uid. We output
a cube group only if its user reach is greater than 20.
The second measure, top-k queries, computes the top-5
most popular queries. It is again holistic, but partially
algebraic on query. Since it is not a numerical measure,
monotonicity does not apply.

6.1.3 Baseline Algorithms

We compare our MR-Cube algorithm against three base-
line algorithms: the naive MapReduce algorithm (Naive)
described in Algo. 1 and adaptations of two parallel
algorithms proposed in Ng et al. [18], BPP and PT. The
latter two algorithms are designed for cube material-
ization over flat dimension hierarchies using small PC
clusters. To ensure a reasonable comparison, we adjust
these algorithms to fit our MapReduce infrastructure.

MR-BPP: Adapted from BPP (Breadth-first Partitioned
Parallel Cube), a parallel algorithm designed for cube
materialization over flat dimension hierarchies. It di-
vides the cube lattice into subtrees rooted at each dimen-
sion attribute. For each subtree, it partitions the dataset
according to the attribute value and computes the mea-
sure (or intermediate results) for each data partition in
parallel. The overall measures are then combined from
those of individual partitions.

MR-PT: Adapted from PT (Partitioned Tree), a parallel
algorithm designed for cube materialization using PC
clusters with a small number of machines. It repeatedly
partitions the entire cube lattice in binary fashion until
the number of partitions matches the number of avail-
able machines. It then computes the measures for all
cube groups in each lattice partition on a single machine.
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PT can be directly adapted to our MapReduce setting:
when the number of machines exceeds the number of
cube regions, each machine then only needs to process
a single cube region.

Since both original algorithms are designed for flat
dimensions, we convert our dataset into an acceptable
format by flattening our multi-level hierarchies. The
task allocations step (i.e., assigning cube computation
tasks to machines) in both algorithms are conducted
during the map phase. During the reduce phase, the
BUC algorithm is then run on the tuples just like in
the original algorithms. We note here that, incidentally,
MR-BPP is similar to the algorithm proposed by You et
al. [30] and MR-PT is similar to the algorithm proposed
by Sergey et al. [24].

There are two more algorithms described in Ng
et al [18], namely RP (Replicated Parallel BUC) and ASL
(Affinity Skiplist). Algorithm RP is dominated by PT and
is therefore ignored here. Algorithm ASL processes each
cube region in parallel and uses a Skiplist to maintain
intermediate results for each cube group during the
process. In this study, the functionality of the Skiplist is
provided by the MapReduce framework itself, turning
ASL into our naive algorithm; and is thus also ignored.

6.2 Experimental Results

We focus on three main parameters that impact the
performance of the algorithms: data scale (number of
tuples in the dataset), parallelism (number of reducers)
and hierarchies (number and depth of the dimension
hierarchies, which affect the cube lattice size). During the
map phase, the system automatically partitions the input
data into roughly 1M tuples per mapper. As a result,
the number of mappers is the same for all algorithms
with the same input data and we do not examine its
impact. We emphasize that, for MR-Cube, we measure
the total time including the sampling process and batch
areas generation, each of which take just under a minute
to complete for all runs. In addition to the experimental
results described here, we provide additional analysis
and anecdotal results over a real life cubing task in Sec. 6.3.

6.2.1 Impact of Data Scale

We first analyze the cubing time over the Real datasets
of different data scales for computing user reach and
top-k queries (where k is 5). The dimension hierarchies
adopted are location, domain, and gender, as described in
Sec. 6.1.1. This results in a cube lattice with 24 regions.
The full dataset contains 516M tuples and datasets of
smaller scales are random subsets of the full dataset. The
parallelism is set to 128. Except the number of tuples,
this general setting is similar to those adopted in earlier
studies [3], [18] in terms of the product of the attribute
cardinalities.

As shown in Figs. 12 and 13, MR-Cube scales much
better than the baseline algorithms. MR-BPP and MR-
PT both fail to cube after 4M tuples because they are
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Fig. 11. Running time over Example dataset. Dashed
lines indicate use of graceful degradation.

not able to leverage the full parallel power provided by
MapReduce. Naive performs better at small data scales
because of its low overhead. It, however, fails after the
20M tuples mark. MR-Cube is the only algorithm that
can successfully cube the full dataset.

Fig. 11 illustrates the running times for computing
reach for the Example datasets. The hierarchies being
adopted are location and query topic, as shown in Fig 5, for
a cube lattice of 16 regions. The full dataset contains 1B
tuples and we again randomly form the smaller datasets.
For this particular experiment, we incorporate graceful
degradation: i.e., when a cube group is too large to be
computed, we allow the algorithm to proceed by ig-
noring the offending group. This prevents the algorithm
from failing, but leads to the cube being only partially
materialized. As expected, Naive, MR-BPP, and MR-PT
cannot scale up to the full dataset, failing at 100M, 10M
and 50M tuples, respectively, if graceful degradation is
not used (solid lines). MR-Cube, however, scales well
and fully computes the cube within 20 minutes for the
full dataset. Even when graceful degradation is used
(dashed lines), MR-Cube still performs significantly bet-
ter than the baseline algorithms.

Insights: MR-Cube performs worse than Naive at small
data scale, especially when computing the top-k queries.
This is because monotonic property can not apply here
and hence the BUC algorithm employed by MR-Cube
cannot prune efficiently. Also, in Figs. 11, 13 and 13, us-
ing MR-Cube becomes viable when the speedup accrued
due to better value partition and lattice partitioning out-
weighs the overhead involved in the sampling process.
Further, for MR-PT, its approach of effectively copying
the dataset to each reducer is clearly not practical under
MapReduce. It also does not take advantage of any
parallelism beyond the number of regions.

6.2.2 Effect of Parallelism

Next, we analyze the impact of increasing parallelism
on the cube computation time in Fig. 14 using the
Example dataset with 50M tuples. We report numbers
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queries measure.

for Naive and MR-Cube only: due to the overhead of
task setup for large jobs, the effect of parallelism can
only be appreciated with large datasets, at which both
MR-PT and MR-BPP fail. We observe that MR-Cube
scales linearly up to 200 nodes, after which the setup
and runtime overhead of the MapReduce infrastructure
factors in and cancels out the benefit from increasing
parallelism.
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Fig. 14. Running time over Example dataset with varying

parallelism.

6.2.3 Effect of Hierarchies

We further analyze the effect of hierarchies on cube
computation using the Example-10M dataset. In the first
two experiments in Fig. 15, we either fix the depth
and vary the number of hierarchies (middle panel) or
fix the number and vary the depth of the hierarchies
(left panel). Not surprisingly, increasing the depth has
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Fig. 15. Running time over Example-10M dataset with

different hierarchies.

a more gradual increase in runtime than the number
of hierarchies. In the third experiment (right panel), we
fix the total number of levels across all dimensions and
vary the configuration: going from 8 levels in a single
hierarchy (8, 0) to 8 flat dimensions (0, 8). The result
indicates that having 8 flat dimensions is a lot more
costly for cube computation than having a single 8-level
dimension hierarchy, which is not surprising since the
cube with flat dimensions produces a much larger cube
lattice than the hierarchical version.

In summary, MR-Cube clearly outperforms currently
available distributed algorithms for cubing large data on
holistic measures. From an implementation standpoint,
it is advisable to provide both Naive and MR-Cube
algorithms to the user. In the case when the data is
small, or the measure is algebraic, the Naive algorithm
is recommended. As the data and lattice size increase,
and when the measure is holistic, the user can switch to
MR-Cube.

6.2.4 Mining Interesting Cube Groups

As shown in Fig. 16, our mining algorithm scales well
with the size of the dataset. The scalability can be
attributed to two factors. First, the size of the inter-
mediate materialized data cube (i.e. the output of the
MR-Cube algorithm) does not increase as rapidly with
increasing dataset size. Secondly, since the data is now
value partitioned, we take advantage of the algebraic
properties and use a combiner to preaggregate mapper
output. This decreases intermediate data, leading to very
fast mining of interesting groups.
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Fig. 16. Cube mining time with varying dataset size.

6.3 Anecdotal Results

In this section, we present some anecdotal results from
an actual cube analysis task over a Yahoo! Search log
sample with 500M items. The analysis involves 6 di-
mensions containing a total of 9 individual attributes
(including the attribute query for individual queries)
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Hier. Regions 192 Annotation M/R 1m 14s
Naive Regions 512 Cube Materialize 20m 3s
Head Regions 28 Post-process 4m 12s

Avg Map time 3m 21s Map Out Tuples 14B
Avg Shuffle Time 8m 29s Map Out Bytes 1.1TB

Avg Reducer Time 4m 12s Cube Size 216GB

Fig. 17. Performance statistics of the anecdotal analysis.

NY RI ME WI
Monday Sunday Sunday Monday
Tuesday Friday Monday Sunday
Friday Monday Tuesday Tuesday

(a) Top 3 frequent days for female users clicking
on IMDB URLs, by U.S. state.

Jan Feb
Joanna Pacitti Joanna Pacitti

Lisa Bonet Tonya Harding Today
Martin Luther King Jr Eliza Dushku

Kim Kardashian Rihanna

March April
Crystal Mckellar Swine Flu

Natasha Richardson Twitter
Watchmen Keshia Night Pullam

XBox 360 Ring Sabrina Lebeauf

May June
Montauk Monster Hyalinobatrachium pellucidum

Kris Allen David Carradine
Adam Lambert Dream Interpretations
Kate Gosselin Frank Lloyd Wright Houses

(b) Queries with highest reach on Wikipedia URLs, by Month

Fig. 18. Anecdotal Results from the search log analysis

and computes the measures reach and top-k (k = 5.) It is
performed on a Hadoop 0.20 cluster with 2048 mappers
and reducers. Fig. 17 illustrates relevant performance
statistics on the analysis. Some example projections of
the materialized data cube are shown in Fig. 18.

We gained some further insights while performing
this cubing task. First, MR-Cube properly partitioned
the cube lattice and distributed the computational work
load evenly across all nodes. As a result, no single long-
running reducer held up the progress of the task. Second,
due to the large number of cube groups (resulting from
the fact that one of the dimension attributes, query, has
millions of unique values), the shuffle phase took longer
than the map or reduce phases. Third, as expected from
our discussion in Sec. 5.2, our conservative estimation
of partition factors avoided any skew-based reducer fail-
ures. Finally, we noticed that skew in the query attribute
(e.g., queries like “amazon” or “imdb” were issued by
millions of unique users) leads to many regions being
value partitioned, but the average groups within those
regions were very small. Since partitioned groups are
not pruned, this further led to a large number of groups
which had to be pruned in the post-processing step.
While we do not address extreme data skew in this
paper, we provide some initial discussion of it in Sec. 8.

7 RELATED WORK

Since the introduction of data cube by Gray et al [11],
many techniques [2], [3], [9], [12], [13], [21], [29] have
been proposed for efficient cube computation. Leverag-
ing the algebraic or monotonic properties of the mea-
sures has been at the center of those techniques. In
particular, the BUC algorithm [3] leverages monotonic
measures like COUNT to efficiently compute the iceberg
cube. These studies focus on non-parallel algorithms and
are not scalable to the billions of tuples that we aim
to analyze. Further, many of these approaches assume
the cube measures to be algebraic and are therefore not
applicable to the analysis tasks that we are interested in.

Ng et al [18] first introduced a series of parallel algo-
rithms for cube computation over small PC clusters. Two
of our baseline algorithms (MR-BPP and MR-PT) are
adopted from this study. However, as we demonstrate in
our experiments, those algorithms are designed for small
PC clusters and therefore can not take advantage of the
MapReduce infrastructure. Other recent algorithms for
parallel cubing either require a special parallel architec-
ture that is different from MapReduce [14] or require the
measures to be algebraic [5], [24], [30]. Chen et al. [4]
address the parallel evaluation of composite aggregate
queries. However, it focuses on computing composite
measures for specific cube regions and does not handle
the reducer-unfriendliness that we study here.

Our work is also complementary to recent studies on
MapReduce languages like Pig [19] and Sawzall [20],
which provide a user-friendly layer over MapReduce for
ad-hoc aggregate analyses. The cube computation task
can be incorporated as an operator into those languages
to provide users with a friendly way to explore their
data without issuing many ad-hoc aggregate queries.

Implementations of large-scale distributed aggrega-
tion have been documented in proprietary systems.
The Google Dremel [16] system uses a hierarchical
architecture to compute aggregates which cannot be
directly applied to holistic measures. Aster Data’s
SQL/MapReduce [10] uses the MapReduce model in
combination with a mature database system; we expect
cube-style queries to be executed similar to our Naive
approach in their environment.

We note that computing certain holistic measures ap-
proximately with memory bounds or in the presence of
heavy skew is the subject of many previous studies [7],
[26]. Our work differs these by providing a generic
framework that works for a large number of holistic
measures without the need for ad hoc specialization. Fur-
thermore, we are able to compute the measures exactly
instead of approximately.

In addition to the exact materialization of data cubes,
the automated surfacing of “interesting” regions has
been widely studied. Kamber et al. [15] introduces rule-
driven mining of data cubes, while Sarawagi et al. [23]
introduces discovery-driven mining by highlighting ex-
ceptional regions in the cube. The i3 project [22] details
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methods and operators to aid manual exploration based
on observed values in the data cube.

8 FUTURE WORK

There are several issues beyond the scope of the current
paper that we would like to address as part of future
work. The most interesting and challenging issue is
that of extreme data skew, which occurs if a few cube
groups are unusually large even when they belong to
a cube region at the top of the lattice (i.e., those with
fine granularities such as 〈query, city〉). This causes
value partitioning to be applied to the entire cube and
therefore reduces the efficiency of our algorithm. We
briefly discuss some preliminary thoughts on this issue.

We currently perform value partitioning on a region-
by-region basis: if a cube region is estimated to con-
tain a reducer-unfriendly group, all groups within the
region are value partitioned, many of which may not
be necessary. This approach works well until there is
extreme data skew, which leads to most cube regions
being value partitioned. We are actively investigating
an alternative approach, of marking reducer-unfriendly
groups instead of regions. Since the number of groups can
be very large, it may not be feasible to compute quickly
or maintain some statistics in the mapper’s memory, as
can be easily done for regions. We are looking into the
use of compressed counting data structures such as CM-
Sketch [7] and Log-Frequency Sketch [26] as a solution.

9 CONCLUSION

In this paper, we study cube materialization and subse-
quent mining of holistic measures over extremely large
data such as search logs using the MapReduce frame-
work. We identify a subset of holistic measures that
are partially algebraic and propose the technique of value
partitioning to make them easy to compute in parallel. We
design algorithms that partition the cube lattice into batch
areas to effectively exploit both the parallel processing
power of MapReduce and the pruning power of cube
materialization algorithms. Further, we demonstrate the
ability to surface interesting cube groups as part of
the cube computation process. Experiments over real
and synthetic data show that our MR-Cube algorithm
efficiently distributes the computation workload across
the machines and is able to complete cubing tasks at a
scale where prior algorithms fail.

REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, et al. HadoopDB:
An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. VLDB, 2009.

[2] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton,
R. Ramakrishnan, and S. Sarawagi. On the Computation of
Multidimensional Aggregates. VLDB, 1996.

[3] K. Beyer and R. Ramakrishnan. Bottom-Up computation of sparse
and iceberg CUBEs. SIGMOD, 1999.

[4] L. Chen, C. Olston, and R. Ramakrishnan. Parallel evaluation of
composite aggregate queries. In ICDE, 2008.

[5] Y. Chen, F. K. H. A. Dehne, T. Eavis, and A. Rau-Chaplin. PnP:
sequential, external memory, and parallel iceberg cube computa-
tion. Distributed and Parallel Databases, 2008.

[6] H. Chernoff. A Measure of Asymptotic Efficiency for Tests of
a Hypothesis Based on the Sum of Observation. The Annals of
Mathematical Statistics, 1952.

[7] G. Cormode and S. Muthukrishnan. The CM Sketch and its
Applications. Journal of Algorithms, 2005.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. OSDI, 2004.

[9] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D.
Ullman. Computing Iceberg Queries Efficiently. VLDB, 1998.

[10] E. Friedman, P. Pawlowski, and J. Cieslewicz. SQL/MapReduce:
A Practical Approach to Self-Describing and Parallelizable User-
Defined Functions. VLDB, 2009.

[11] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data Cube: A Rela-
tional Operator Generalizing Group-By, Cross-Tab and Sub-Totals.
ICDE, 1996.

[12] J. Hah, J. Pei, G. Dong, and K. Wang. Efficient Computation of
Iceberg Cubes with Complex Measures. SIGMOD, 2001.

[13] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing
Data Cubes Efficiently. SIGMOD, 1996.

[14] R. Jin, K. Vaidyanathan, G. Yang, and G. Agrawal. Communica-
tion & Memory Optimal Parallel Datacube Construction. Parallel
and Distributed Systems, 2005.

[15] M. Kamber, J. Han, and J. Chiang. Metarule-guided mining of
multi-dimensional association rules using data cubes. KDD, 1997.

[16] S. Melnik, A. Gubarev, J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive Analysis of Web-
Scale Datasets. VLDB, 2009.

[17] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed
Cube Materialization on Holistic Measures. ICDE, 2011.

[18] R. T. Ng, A. S. Wagner, and Y. Yin. Iceberg-cube computation
with PC clusters. SIGMOD, 2001.

[19] C. Olston, B. Reed, U. Srivastava, et al. Pig Latin: A not-so-foreign
language for data processing. SIGMOD, 2008.

[20] R. Pike, S. Dorward, et al. Interpreting the data: Parallel analysis
with Sawzall. Scientific Programming, 2005.

[21] K. Ross and D. Srivastava. Fast Computation of Sparse Datacubes.
VLDB, 1997.

[22] S. Sarawagi. i3: intelligent, interactive investigation of olap data
cubes. ACM SIGMOD Record, 2000.

[23] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
Exploration of OLAP Data Cubes. EDBT, 1998.

[24] K. Sergey and K. Yury. Applying Map-Reduce Paradigm for
Parallel Closed Cube Computation. DBKDA, 2009.

[25] K. V. Shvachko and A. C. Murthy. Scaling Hadoop to 4000 nodes
at Yahoo! Yahoo! Developer Network Blog, 2008.

[26] D. Talbot. Succinct Approximate Counting of Skewed Data. IJCAI,
2009.

[27] J. Walker. Mathematics: Zipf’s Law and the AOL Query Database.
Fourmilog, 2006.

[28] Y. Xie and D. O Hallaron. Locality in search engine queries and
its implications for caching. INFOCOM, 2002.

[29] D. Xin, J. Han, et al. Star-Cubing: Computing Iceberg Cubes by
Top-Down And Bottom-Up Integration. VLDB, 2003.

[30] J. You, J. Xi, P. Zhang, and H. Chen. A Parallel Algorithm for
Closed Cube Computation. ICIS, 2008.

Arnab Nandi is a recent Ph.D. in Computer Science from the University
of Michigan, Ann Arbor. His research interests include database usabil-
ity, query interfaces and search query log mining.

Cong Yu is a Research Scientist at Google Research New York working
on structured data and social data management. His primary research
interests are scalable social information management, information ex-
traction management and database usability.

Philip Bohannon is a Principal Research Scientist at Yahoo! Research.
His interests include XML processing, information extraction, data inte-
gration, data cleaning and a variety of indexing and performance topics.

Raghu Ramakrishnan is Chief Scientist, Audience, and a Research
Fellow at Yahoo! Research. His interests include data mining, online
communities, and Web-scale data management. Ramakrishnan is a
Fellow of the ACM and IEEE.


