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ABSTRACT
The effective reporting of climate hazards, such as flash floods, hur-
ricanes, and earthquakes, is critical. To quickly and correctly assess
the situation and deploy resou rces, emergency services often rely
on citizen reports that must be timely, comprehensive, and accurate.
The pervasive availability and use of smartphone cameras allow
the transmission of dynamic incident information from citizens in
near-real-time. While high-quality reporting is beneficial, gener-
ating such reports can place an additional burden on citizens who
are already suffering from the stress of a climate-related disaster.
Furthermore, reporting methods are often challenging to use, due
to their length and complexity. In this paper, we explore reducing
the friction of climate hazard reporting by automating parts of the
form-filling process. By building on existing computer vision and
natural language models, we demonstrate the automated genera-
tion of a full-form hazard impact assessment report from a single
photograph. Our proposed data pipeline can be integrated with
existing systems and used with geospatial data solutions, such as
flood hazard maps.
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1 INTRODUCTION
The prevalence of natural hazards is likely to increase due to the
rise in weather and climate extremes, leading to adverse impacts
and risks to human and natural systems worldwide [22]. The United
Nations consolidated various measures to combat climate change
in their 2030 Agenda for Sustainable Development Goals [15]. In
particular, Goal 13 calls for urgent action to improve resilience
to natural hazards. Due to increasing climate disasters and the
resulting incidents, the demand for, and the pressure on, emergency
services is rising [25].

Emergency services use spatial data tools and location-based
data from various agencies to understand risks and take preventive
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measures, such as detecting weather changes and monitoring sea
level rise[5, 30, 31]. Although these tools provide valuable infor-
mation, they rely on scheduled batch updates and hence do not
reflect real-time conditions. Data collected by citizens during nat-
ural hazards can offer more immediate and dynamic information,
enhancing the situational awareness of emergency services [6].

The pervasiveness of communications infrastructure has enabled
many different modes for citizens to contact emergency services in
the event of a climate-related hazard. For reporting non-emergency
incidents, local city councils and municipalities offer reporting tools
that citizens can access via their phones or websites, such as “311”
services in Canada [21] and the United States [18]. However, calls
to a “311” service do not scale well in emergencies as they require
human personnel who are likely to answer emergency calls in-
stead. While phone calls are still the most common communication
channel, others are becoming more accessible, such as text messag-
ing, online reporting platforms, and social media. Website-based
reporting does not present scale issues, but it can impose other
difficulties: citizens must fill out and submit forms which tend to be
long and complex. They are asked to type out a description of the
incident, indicate the incident’s location on a map, and select the
appropriate incident category from a large number of categorical
drop-down fields. Since these are usually performed on a mobile
device, users are significantly slower [12] when filling in forms due
to touchscreens’ limited text input capabilities [23, 26]. In addition
to this interaction difficulty, there is often uncertainty about the
contents of a report. A citizen may need help understanding jargon
or acronyms, the expected format of the reports, or what informa-
tion is in scope. Reporting detailed information during extreme and
rushed circumstances is already a high-friction event for the citizen.
The length and complexity of any given reporting method create an
inherent trade-off between the number of reports received and the
comprehensiveness and accuracy of each report. Longer and highly
structured forms reduce data quality since the complexity may lead
to submission errors or citizens giving up on the report entirely.
Moreover, as non-emergency reports are voluntary, citizens are less
likely to accept the cost to receive any potential benefit. As a result,
emergency responders receiving the report may not have sufficient
high-quality data, leading to the incident not being resolved in
the intended manner. Therefore, to better assess the impacts and
resulting risks to human and natural systems, we need effective
tools and services to lower all possible friction, and enable a timely
response from multi-agencies.

Adoption of AI-based services for emergency services: Cur-
rently available commercial solutions for emergency services in-
clude OneCall, a Hexagon solution that can help operators in the
command and control rooms to detect complex emergencies sooner
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Figure 1: Workflow for a camera-first form filling approach

through assistive integrated AI [9]; RedBox Voice’s AI-supported
speech analytics to support emergency services in reporting inci-
dents [24]; and Dataminr’s First Alert product for the public sector
to alert first responders about breaking events and enable a faster
response [3]. Despite some early adopters who use the above soft-
ware, a study conducted by Five9 [13] in the UK highlights the
untapped potential of AI services within existing emergency ser-
vices, such as assisting in handling a large number of calls and
collecting incident-relevant information to share amongst respon-
ders [1]. While implementing commonly agreed standards helps
manage the overall situation in an incident between different groups
of responders, there are still common challenges involved in current
multi-agency incident response processes, such as [33]:

• Redundancies in communication streams;
• Missing joint overview across agencies;
• Data silos which limit information sharing;
• Heterogeneous IT system landscape; and
• Lack of integrated real-time data on current weather, traffic,
and hazard conditions.

Additional hurdles to adoption of AI-based services include avail-
ability of funding, manual interaction during multi-agency incident
coordination, and a need for more awareness of the potential of
using AI [1, 13, 20]. Since adopting new systems can increase the
complexity of already fragmented infrastructure, it is important to
consider augmenting existing workflows than replacing them.

Reducing the Friction: To address these issues, we take the ap-
proach of using a camera-first approach. Can we reduce the friction
of form-filling for the citizen by auto-populating a report based
on a photograph taken on their smartphone? This paper explores
this question, and presents an approach that builds on publicly
available data, models, and tools. As a proof-of-concept, we demon-
strate how combining off-the-shelf tools and services including
Google Teachable Machine, Microsoft Azure Cognitive Image API,
and OpenAI’s GPT models can accelerate the process of analysing
incoming incident data, extract valuable information from submit-
ted images, and help generate an automated hazard impact report.

With this approach, we aim to reduce friction for citizens in time-
critical situations when reporting incidents and support emergency
services in their response through (near-) real-time image analysis
showing the impact of the hazard. Overall, this study contributes
to facilitating multi-agency reporting of climate hazard impacts.

2 CASE STUDY
2.1 Reducing friction using camera-first

reporting
Given the challenges of current approaches, we look towards meth-
ods to reduce the friction in climate hazard reporting. This is im-
portant for various reasons: First, requiring impacted citizens to
fill out complex and arduous forms, especially during emergen-
cies, is an unreasonable ask. Second, citizens may have literacy
or language barriers, a hurdle to accurate and complete reporting.
Finally, emergency services may require information in a specific
format for cross-agency distribution or need particular questions
answered, which the impacted citizens may not think to provide.
Simultaneously, smartphone adoption is now at an unprecedented
level worldwide. Over 6 billion people use smartphones [4] with
high penetration numbers across countries irrespective of economic
status or urban compared to rural population [16]. Given such high
adoption rates, we propose using smartphone cameras as a primary
method for hazard reporting, where the impacted citizen takes a
photograph, and the remainder of the process is offloaded to our sys-
tem. Similarly, there has been drastic progress in computer vision
and AI models, with profound implications for science and real-
world applications. In this study, we combine three complementary
concepts to generate structured and comprehensive reports from
photographs taken by impacted citizens:

• Supervised image classification;
• Unsupervised image understanding;
• Object recognition; and
• Generative AI models for text generation.
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Due to the widespread availability of machine learning frame-
works (e.g., PyTorch, TensorFlow), computer vision services from
cloud providers (e.g., Google Cloud, AWS, Azure), and pre-trained
models (e.g, OpenAI GPT, MobileNet), we observe that it is now pos-
sible to build complex AI-based workflows with minimal technical
effort or expertise.

2.2 Design and development of an automated
climate hazard report through computer
vision and AI-based text generation

A demonstration workflow for generating a pre-filled report using
only a smartphone camera photograph is described herein and
visualized in Figure 1. We assume that photographs are geotagged
– either the smartphone embeds this information in the EXIF (the
standard for metadata in media containers) fields or attaches the
coordinates when uploading the photograph. Our proof-of-concept
workflow is as follows:

• An image classifier using MobileNet via Google’s no-code
Teachable Machine tool and a collection of images of different
climate hazards. This allows us to classify the incoming
images into different categories of natural hazards, such
as large-scale or small-scale hazards, and different types,
including floods and earthquakes.

• An off-the-shelf Microsoft Azure Cognitive Image API to
detect and extract objects from images indicating if urban
assets, environmental infrastructure, and people might be
located in spatial proximity and could be impacted by the
hazard.

• An off-the-shelf Microsoft Azure Cognitive Image API to
provide a text description of the image.

• OpenAI’s GPT models (accessed through Lex.page) to gen-
erate structured text descriptions based on keywords and
predicted class labels provided by the Azure Cognitive Image
API. This involves providing the model’s content and posing
a series of specific questions.

Each of these models, tools, and APIs was selected for their
rapid prototyping and generalizability. Google Teachable Machine
allowed us to quickly train a custom model which we could deploy
ourselves. Microsoft Azure Cognitive Image API is a major cloud
model API similar to those offered by other large cloud providers.
While Microsoft has some native geospatial capabilities, it is also
compatible with different Geographic Information Systems (GIS),
such as QGIS and ArcGIS [14]. While there are various ways to store
raw data from the computer vision algorithm directly in Microsoft
(e.g., Azure SQL DB or Azure Data Storage), we suggest using
GIS software to integrate and transform the data and combine
it with other geospatial information about the incident area [32].
This integrated picture can improve the situational awareness of
several emergency services. OpenAI GPT-3, and later GPT-4, were
chosen for their comprehension abilities and ease of prompting.
We address architectural considerations in deployments of such
models in Section 3.3.

Figure 1 shows the flow of the individual steps from a climate
hazard (Hurricane Ian used here) occurs by a citizen who then cap-
tures the hazard in a photo which includes meta-information such
as an image description, date, time, and the location of the incident.

The next step, data transformation, involves reverse geocoding the
incident coordinates, classifying the event type, and recognizing ob-
jects. This transformed data is then fed through generative natural
langugage models to create the final report.

2.3 Evaluation Considerations
2.3.1 Evaluation Form. Hazard reporting forms vary greatly be-
tween localities which makes finding a representative form difficult.
In support of multi-agency interoperability, the US introduced the
National Incident Management System (NIMS), a nationwide, sys-
tematic approach to incident management, including the command
and coordination of incidents, resource management, and infor-
mation management [19]. Similarly, the UK adheres to the Joint
Emergency Services Interoperability Principles (JESIP) to improve
and standardise how the police, fire and rescue, and ambulance
services work together when responding to major multi-agency in-
cidents [10]. In this study, we use questions from JESIP M/ETHANE,
a standardised reporting framework used by emergency services
in the UK to share incident information between responders and
control centres [11].

2.3.2 Evaluation Criteria. In our use case, the primary criteria of
pre-filled form value is the similarity to human input. If the forms
resemble human input, the citizen only needs to correct inaccuracies
and omissions, rather than inputting the entire form body from
scratch. Additionally, the pre-filled form values prime the citizen
to respond in a similar format, and, since they are provided with
example answers, may be able to better infer the intended questions.

2.4 Results: Hazard impact assessment report
for Hurricane Ian (USA, September 2022)

We now provide an example of a structured hazard impact assess-
ment report generated from a single image (taken by WUSF Na-
tional Public Radio) following Hurricane Ian on October 13, 2022 [8].
Hurricane Ian made landfall in Florida in late September 2022 and
was classified as a Category 4 storm with sustained winds of 150
mph, making it the fifth strongest storm ever to impact the US [17].
Table 1 lists the inputs corresponding to the data collected from the
time the incident was reported through the data transformation
and further analysis of the data (see steps 1 to 3 of the workflow
as shown in Figure 1). The report sections in italics, including the
complete sentences, were generated using AI services.

Table 2 provides the impact assessment report (see step 4 of
the workflow in Figure 1), which follows the M/ETHANE report
structure.

3 DISCUSSION
3.1 Evaluation of the hazard impact identified

by AI on identified objects
While existing M/ETHANE reports provide vital information to the
responding agencies, we show how we can further enhance their
impact assessment through the analysis of imagery data. AI-assisted
image analysis can provide a quicker assessment of the scope of
response required, which would have taken more time and effort if
responders had extracted and analysed image data manually.



HILDA ’23, June 18, 2023, Seattle, WA, USA Kristina Wolf, Dominik Winecki, and Arnab Nandi

Input

Image (WUSF 2022):

Image description (WUSF 2022): Flooding in the Serenity Oaks neighborhood in
Evergreen Springs.

Publication date (WUSF 2022): Published October 13, 2022 at 9:42 AM EDT
Incident class (Teachable Machine): Class: 1 Large-scale-flood Confidence score: 0.74655056

Incident coordinates (Google Maps) 28.679345745673573,
-81.41474086612188

Address (Google reverse geocoding): 598 Sparrow Ct, Evergreen Springs, FL 32724, USA

Image object analysis (MS Azure):

’outdoor’ with confidence 99.95%
’vehicle’ with confidence 99.43%
’tree’ with confidence 99.39%
’water’ with confidence 99.09%
’car’ with confidence 98.52%
’land vehicle’ with confidence 98.18%
’wheel’ with confidence 97.20%
’sky’ with confidence 92.71%
’tire’ with confidence 91.90%
’flood’ with confidence 84.66%
’lake’ with confidence 81.77%
’parked’ with confidence 71.69%
’ground’ with confidence 64.82%
’reflection’ with confidence 59.17%
’house’ with confidence 54.85%

Image description (MS Azure): A flooded parking lot.

Table 1: Input data for AI-based text generation (own table,
Microsoft Azure Computer Vision, Google Teachable Ma-
chine output in blue italics).

To maximise the time available for emergency services to re-
spond to the incident efficiently and deploy the most suitable re-
sponse teams, the AI-assisted service helps extract objects visible in
the image, such as vehicles, cars, and trees. For detecting and classi-
fying objects in the image, we use Convolutional Neural Networks
(CNN), that are pre-trained image classification models from Mi-
crosoft. While we use an off-the-shelf approach for our case study,
we expect this sub-task to be replicable using the state-of-the-art
computer vision and machine learning techniques [29]. As an ex-
ample, Sarp et al. use a Mask-R-CNN algorithm, a deep learning
Region-Based Convolutional Neural Networks (R-CNN) algorithm
for object detection and semantic segmentation for detecting flood-
water on roadways [27]. Sazara et al. found that a pre-trained deep
neural network (VGG-Net) for deep learning-based feature extrac-
tion with logistic regression classifier resulted in high scores on
all performance measures [28]. For flood area segmentation tasks,
they found that the Fully Convolutional Neural Network (FCN)
offered the highest score. Similar to these approaches, we expect
related models could be applied to identify and label objects, such
as floodwater, cars, roads, and buildings, and indicate the color of
the identified vehicles.

After determining that floodwater was visible in the image, we
tried to refine our questions and extract further information from
the identified body of water, such as the depth of the floodwater. The
AI-generated output by Lex.page editor was “quite high”, as in, “The
water level appears to be quite high”. Although this automatically
generated assessment provides a good first understanding of the
flood risk, emergency services require a more accurate assessment,

M Major
Incident

Has a Major Incident
been declared?

(YES/NO)
(If no, then complete
M/ETHANE message)

YES - Taking into account the
reported incident coordinates
and the image object analysis,
the affected areas include trees,
vehicles and floodwaters.

E Exact
Location

What is the exact location
or geographical area of
incident?

The exact location of the incident
is 28.679345745673573,
-81.41474086612188

T Type of
Incident

What kind of incident
is it?

The incident is a large-scale flood,
as classified by the Teachable
Machine Machine Learning
algorithm, with a confidence
score of 0.74655056.

What hazards or potential
hazards can be identified?

The identified hazards or
potential hazards include:

• Floodwater covering a
significant portion of the image.
• A white car partially
submerged in the floodwater.
• A red vehicle also partially
submerged in the floodwater.
• Trees and branches on the
left side of the image.
• A road or pathway visible on
the right side of the image.
• A white building or structure
in the background on the right
side of the image.

What is the flood depth
when putting the water
in relation to different
identifiable objects:

If we assume that the white car
in the center of the image has
standard tires with a diameter of
around 65 centimeters, and that
the water level is at the bottom of
the car doors, then the water depth
would be approximately 65-70
centimeters.

What is the flood depth
when compared to the door
of the car?

Estimate the depth of the flood
water through the average size
of a car door height, which is
typically around 1.4 meters (140 cm).
Based on the image, it appears that
the floodwater is around halfway up
the car door, so we can estimate the
depth to be approximately 70 cm.

H Hazards
What is the flood depth
when put in relation to
the tires of the car?

Based on the estimated diameter
of a car tire, which is around
25 inches or 0.63 meters, and the
portion of the tire submerged in
the water, it appears that the flood
water is at least several inches deep,
possibly around 6-8 inches or 15-20 cm.

A Access What are the best routes
for access and egress?

The best routes of access and egress
are: the nearby roads, paths, and
waterways that are not blocked by
the floodwaters.

How many casualties are
there and what condition
are they in?

At this time, there are no reported
casualties.

N Number of Casualties Can you identify people? There do not appear to be any visible
signs of people in the frame.

E Emergency
Services

Which and how many
emergency responder
assets/personnel are required
or are already on-scene?

Emergency responders (firefighters,
police officers, or members of a local
or national disaster response team)
may have been called to the scene to
assist with evacuation, rescue operations,
or other related activities.

Table 2: M/ETHANE incident impact report using AI-based
text generation in Lex.page AI and OpenAI GPT-3 (own table,
AI-text in blue italics).

e.g., quantifiable water estimates to respond more efficiently. When
using OpenAI’s GPT-3, the model explained that it is easier to accu-
rately determine the floodwater depth in the image with additional
information or a reference point of known size. However, some
objects in the image can help roughly estimate the water depth.
When we asked if we could estimate the water depth by identified
objects, we received an estimate of 65-70 cm. We then narrowed the
question down to two features of the car: tires and doors. When we
related the high water to the door, the estimate of the high water
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Has a Major Inci-
dent been declared?
(YES/NO)

Based on the information provided, it is not clear whether a
Major Incident has been declared.

What is the exact lo-
cation or geographi-
cal area of incident?

The exact location of the incident is at 598 Sparrow Ct, Ever-
green Springs, FL 32724, USA. The geographical coordinates
are 28.679345745673573, -81.41474086612188.

What kind of inci-
dent is it? The incident is a large-scale flood, as indicated by the incident

class and the image description from WUSF 2022 which men-
tions flooding in the Serenity Oaks neighborhood in Evergreen
Springs.

What hazards or po-
tential hazards can
be identified?

Based on the image metadata and object analysis, the follow-
ing hazards or potential hazards can be identified: 1. Flooding:
The primary hazard is the large-scale flood, which can lead to
property damage, infrastructure issues, and potential threats
to human safety. 2. Submerged vehicles: The presence of vehi-
cles (cars and land vehicles) in the flooded area indicates that
they may be damaged or pose a risk to drivers and passengers.
3. Impassable roads: The flooding may make roads, such as
the parking lot mentioned in the MS Azure image description,
difficult or impossible to navigate, disrupting transportation
and access to services. 4. Damaged property: The presence of
water, houses, and trees in the image analysis suggests that res-
idential properties and vegetation may be affected by the flood.
5. Potential electrical hazards: Flooding can lead to electrical
hazards if water comes into contact with electrical systems or
appliances. Please note that this analysis is based on the avail-
able metadata and image analysis, and additional hazards
may be present that are not mentioned here.

What is the flood
depth when putting
the water in relation
to different identifi-
able objects?

Based on the provided metadata and image analysis, we cannot
determine the exact flood depth in relation to different identifi-
able objects. However, it’s worth noting that the flood seems to
have reached a parking lot, which suggests that the flood has
covered ground level areas. Further assessment of the actual
image would be required to provide more accurate information
about the flood depth in relation to specific objects.

What are the best
routes for access
and egress?

Given the limited information provided in the metadata and
image analysis, it is not possible to suggest the best routes for
access and egress in the affected area. To determine the best
routes, it would be necessary to have a comprehensive under-
standing of the local road network, current road conditions,
and the extent of the flood. For such purposes, consulting local
authorities, emergency services, or real-time mapping applica-
tions like Google Maps or Waze would provide more accurate
and up-to-date information on the best routes for access and
egress.

How many casual-
ties are there and
what condition are
they in?

Based on the provided metadata and image analysis, there is no
information available about casualties or their conditions. To
obtain accurate information on casualties and their conditions,
it would be necessary to consult local authorities, emergency
services, or news reports from the area.

Can you identify
people? Based on the provided metadata and image analysis, there is no

mention of people being present in the image. It is not possible
to identify any individuals without analyzing the actual image
and having information about people present in the scene.

Which and how
many emergency
responder as-
sets/personnel are
required or are
already on-scene?

The provided metadata and image analysis do not give any
information about emergency responder assets or personnel
required or already on-scene. To determine the appropriate
number and type of emergency responders needed, it would be
necessary to consult local authorities, emergency services, or
news reports from the area. The specific requirements would
depend on factors such as the extent of the flood, number of
affected individuals, and the severity of the situation.

Table 3: Incident report generated via GPT-4 (AI text in blue
italics). Some questions omitted for space.

was similar (70 cm). However, when we compared the height of the
flood to the car tire, the model suggested that the flood was at least
6-8 inches (15-20 cm) deep. This “at least” estimator can help set a
threshold, i.e., emergency services can activate different response
plans above a certain level and deploy teams to the incident.

Based on these findings, we propose the following approach
to estimate water depth more accurately: Classifying identifiable
vehicles into three main types, such as small car, medium car, and
SUV, and assigning average values for tire height. Suppose we can
identify the vehicle’s make and model; we can then analyse how
high the floodwater is in relation to the tire to provide emergency
services with a quantitative indication of severity. Nevertheless, it is
crucial to point out that the quantitative measures given are a very
rough estimate, and the actual water depth could be significantly
different depending on various factors, such as the slope of the road,
the tire size, and the perspective of the photo. As a next step, we
aim to adopt further image segmentation techniques that can help
us to obtain further information about flood depth.

3.2 Transferability
We can apply the workflow presented in this study to image data
from other climate-related hazard events. For example, we used
our model to to assess local flood events in Newcastle upon Tyne
(UK). For this purpose, publicly available images from Twitter and
online newspaper outlets and user image descriptions serve as
input data. The analysis results helped us better understand the
requirements for input data (such asmost suitable image parameters
and provided image descriptions) and suggest best practises for
future model work that can help generate more accurate output
results. Furthermore, the suggested M/ETHANE report template
can be enhanced and customized by providing additional questions
relevant to other emergency agencies.

3.3 Architecture Considerations
Executing machine learning models may be difficult given the data
and compute needs; however, wireless networks may also be de-
graded during a disaster. Since we assume these are the only techni-
cally challenging components of our form filling system, there are
two classes of system architecture: edge models and cloud models.
Since compute may be limited on a mobile device, uploading the
media to a cloud service to offload model inference removes this
constraint. This allows the use of even larger models than could
fit or execute on the device. These are all desirable attributes, with
the sole drawback being the reliance on a network. Under network
constraints deploying small or compressed models to the cellphone
will reduce the reliance on the network.

Battery use is also an important consideration, as power outages
may prevent charging, and we do not want to keep a device at a
charger during a disaster if a charger can even be found. Running
a large model on a smartphone would use battery, as would the
device’s radios when pushing large image files through a highly
degraded network. It is unclear which of these would use more
energy, especially as both may be performed by dedicated hardware
which would vary by device type.

Between the two architectures, we believe cloud models are
preferable. First, during a full network outage no mobile device
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reporting is possible, so we only consider cases of a network being
degraded in ways that limit bandwidth. Second, since we assume
that machine learning models are larger than their input media,
when bandwidth is limited to a level that prevents image uploads
the network would also be unable to transfer the machine learning
model. In this scenario, the only way to perform camera-first form
filling would be to have the models on the device before the dis-
aster impacts network services. This may be possible if an mobile
application is deployed, but a web-based system would be unable to
do this. Third, we believe that reports containing images are more
useful. If either cloud models or image-including reports are used,
then both can rely on the same uploaded image.

3.4 Limitations
While promising, our proposed workflow may be subject to a vari-
ety of limitations, which can inspire future work. For example, our
approach requires higher broadband capacity to transmit images, or
capable compute resources to execute the machine learning models
on-device, depending on the deployed system architecture. Second,
while the availability of cellular coverage for smartphones is a criti-
cal dependency, we note the emerging trend of smartphone use in
such applications [2] and the focus on resilient communication in-
frastructure as an active area of work [7]. Third, our pipeline relies
on the training of task-specific neural networks to perform com-
puter vision tasks. This requires the curation of training datasets
which could be hard-to-find, and the possibly high compute re-
quirements of training and fine-tuning a model. Furthermore, AI
models can produce misclassifications, erroneous statements, and
hallucinations during report generation, which can potentially be
detrimental to emergency response. While humans produce erro-
neous statements too, the patterns of human-produced errors are
somewhat well-understood, unlike AI-generated errors.

Our analysis of outputs generated by the AI services used in our
pipeline identified some weaknesses that require further investiga-
tion in future development cycles: When we asked for the number
of cars visible in the image, GPT-3 initially indicated that four cars
were visible, although only three cars were detected. When asked
about the geocoding of addresses, GPT-3 did not provide an accurate
answer compared to the geocoding service used. When determining
the floodwater depth estimates, we considered different approaches
to estimating the floodwater involving additional information or
measurements. We expect these limitations to be addressed both
by improvement of the individual components, and also by adding
error-checking steps for the model-generated outputs.

4 CONCLUSION AND FUTUREWORK
Building shared situational awareness is critical for emergency re-
sponse agencies to respond effectively to an incident. The current
incident reporting process can be lengthy and time-consuming for
impacted citizens, impeding emergency response. This paper aims
to simplify and accelerate this process to gather higher-quality
information and reduce the burden on emergency services. This
work demonstrates how we can reduce the friction in generating
structured data (in this case, a hazard impact assessment report)
using a camera-first approach. As a proof-of-concept, we demon-
strate how such data pipelines can be built using off-the-shelf AI

services, including Google’s Teachable Machine, Microsoft Azure
Cognitive Image API, and OpenAI’s GPT models. In the future, we
aim to integrate the current analysis output into geospatial solu-
tions and complement camera-extracted information with external
data sources, such as real-time data about weather and traffic. Ad-
ditionally, we would like to evaluate modern multimodal models
which combine computer vision and NLP, allowing us to answer
more complex questions than possible with object detection alone.
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