Don’t Just Swipe Left, Tell Me Why:
Enhancing Gesture-based Feedback with Reason Bins

Juan Felipe Beltran® Ziqi Huang® Azza Abouzied® Arnab Nandi®

*New York University Abu Dhabi
{juanfelipe,azza} @cs.umass.edu

ABSTRACT

Despite several advances in information retrieval systems and
user interfaces, the specification of queries over text-based
document collections remains a challenging problem. Query
specification with keywords is a popular solution. However,
given the widespread adoption of gesture-driven interfaces
such as multitouch technologies in smartphones and tablets,
the lack of a physical keyboard makes query specification
with keywords inconvenient. We present BINGO, a novel
gestural approach to querying text databases that allows users
to refine their queries using a swipe gesture to either “like” or
“dislike” candidate documents as well as express the reasons
they like or dislike a document by swiping through automat-
ically generated “reason bins”. Such reasons refine a user’s
query with additional keywords. We present an online and
efficient bin generation algorithm that presents reason bins
at gesture articulation. We motivate and describe BINGO’s
unique interface design choices. Based on our analysis and
user studies, we demonstrate that query specification by swip-
ing through reason bins is easy and expressive.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Interactive Search Refinement; Gesture-based Feedback;
Reason Bins

INTRODUCTION

The widespread adoption! of portable, keyboard-less compu-
tational devices such as multitouch-based tablets and smart-
phones and the constantly evolving mobile-app ecosystem?
are increasing consumer’s expectations on the accessibility

'In the US, tablet and smartphone ownership is on a sharp rise, while
desktop and laptop ownership is slightly declining [5].
“Moreover, more Americans are accessing online services through
mobile apps than through desktop web browsers [39].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

1UI 2017, March 13-16, 2017, Limassol, Cyprus
© 2017 ACM. ISBN 978-1-4503-4348-0/17/03. .. $15.00
DOL http://dx.doi.org/10.1145/3025171.3025212

°The Ohio State University
{huangzi,arnab} @cse.osu.edu

of sophisticated and powerful applications, such as text ex-
ploration and querying apps, from the palms of their hands.

The prevalent form of query specification over document
collections, regardless of the underlying document retrieval
model (vector space models with cosine similarity measures,
query-likelihood models, Pagerank, etc.) remains keyword
specification. While users have adjusted to keyword search
on keyboard-devices, the absence of physical keyboards on
tablets and smartphones makes keyword search a subopti-
mal user experience. Character or word-level fext entry [38]
mechanisms such as Dasher [61] are popular in accessibility
contexts. The entry of text, however, using either virtual key-
boards or these methods can be cumbersome. Typing with on-
screen keyboards is tedious and users prefer simpler gestural
interfaces: the success of mobile apps — such as Clear Todo
List [48] — a gesture-driven todo list app that uses a rich-but-
intuitive set of gestures to perform a variety of commands,
and Tinder [1] — a dating app which lets users swipe photos of
potential matches left if they dislike the photo or right if they
like it — highlight the user demand to re-design interfaces that
are more gesture-driven and less keyboard-driven.

In the context of multitouch and gesture-driven interfaces,
gestural input is typically faster and more convenient than
other modes of interaction. Since gestures can be performed
on any part of the screen, there is no strict requirement to initi-
ate the gesture on a specific location, unlike keyboards, which
require the user to carefully locate and press a specific button.
Gestural input also reduces the interaction to a smooth fluid
motion, as opposed to a multitude of tapping actions with a
virtual keyboard. Moreover, the options for user input can
be dependent on the application state: different buttons can
be shown on the screen depending on the currently valid op-
tions for user input. As shown by prior work in gestural query
specification [43, 29], it is possible to have a rich, easy-to-use
language of intuitive gestures for querying relational data.

Consider a “document review” use case, where the user is
constructing a bibliography by sifting through a collection of
research papers. In Figure 1, we depict an example proto-
type user interface, inspired by modern “card” Uls in mobile
applications such as Google Now [62] and Tinder [1], where
the document collection presented is the result of a recom-
mendation algorithm. The swipe gesture allows users to pro-
vide input and feedback on the displayed document. For ex-
ample, the user may notice that the paper in Figure 1 is a
good addition to her bibliography, and hence “like” that paper
by swiping right, with the intent of surfacing similar papers.

BinGo Generalised Hash Teams for
| suggests: | Join and Grou...

Procedures in Object-
Oriented Query Lang...

Performance Analysis of a
Load Balancing..

An Adaptive Hash Join
Algorithm for Mult...

Bypassing Joins in
Disjunctive Queries....

Applying Hash Filters to
Improving the E...

Memory-Contention
Responsive Hash Joins....

An Evaluation of Non- Seerey reading panel\

BinGo recommends the top 7 documents given the current user
query. Clicking on a tab causes its document to appear in the

bucket Hash-Based Join

tm————a
S
N\
\

\

Equi Joiwgorimms.

Users see a history of
documents they
disliked/liked and
query terms built from
swiping through
reason bins

buff

Su'gv. As main memory becomes a cheaper
resou® ash joins are an alternative to the traditional
methoo. N performing equi-joins: nested loop and

i S\ s paner iniraduces 2 modified, adaptive
Jork with dynamic

rial
Swiping a document into the dislike bar
refines the query by adding a negative

weight to the chosen reason bin.
PrOVITES 000 e
problem sizes, " g tabl
memory, an” p “_vanced 1O controllers w
size 0 pers. 1t has been impiemen
prototyr ¥ NonStop SQL, a DBMS running {
dom - acs.
/

1.7 g Aduction

mel

acl

overlo o

-
-

file

Catchall bins
| allow users to

/

database machines or in research environments. This

without reason paper addresses the problem of performing hash join
algorithms in a multiuser environment on a multi-pur-
pose computer. In such an environment it is very dif-
ficult 1o assign a stalic amount of memory 10 a process
performing a join, especially if this process nceds sub-

stantial amounts of memory. In addition to this, over-
flow handling is a problem arca in hash join algorithms.

Hansjorg Zeller, Jim Gray

TANDEM
10100 N. Tantau Avenue, LOC 251-05
Cupertino, CA 95014

Overflow of a hash tble can result from , comect

estimate of the query optimizer or fro g lack of

memory at runtime. By introducing dy"

about bucket partitioning (as done in

[Kits83]), beter performance for ~ &+ cases can be
hicved. Fi —

IAricly of hash join implementations has shol]
sh joins are the method of choice for equi-joir ficred atributes have CPU cost in the order of b
M=% that sorymerge joins reduce this cost 1o n log n. To

* LetR,S|
i

* Inthefq

Algorithms for Multiprocessor

-——-—-— -
Computers.

-
td
/
/

/

Sort vs. Hash Revisited: Fast Join
Implementation on Modern Multi-
Core CPUs.

buff

Practical Skew Handling in

decisions Parallel Joins.

JRACE join memorial

Swiping a document into the like bar
refines the query by adding a positive
om] weight to the chosen reason bin.

land main memory constm; % _Sechion 3 discus-
hsh access strategies for main . ® v hash tables,
tion 4 introduces the adaptive N join algo-

For each document,
a set of reason bins
allow the user to
refine their current
query with more
keywords

overflow

file

ution Cost for Different Join Algorithm. \

el known, that simple nested loop joins on u. gy

N\

like/dislike a just no & indices are available on join columns and if the—joir n s b X just yes
/ ——— osult does not need 10 b soried on the join columns. be able [be more precise, we wil make the following % o =
document Most of these implementations have been done on assumptions: - -

Users collect the current

document in a reading list for
future viewing

SELECT *

FROM R,S ESa 4
WHERE R =Ss;

stores
B.

could

Figure 1. The BINGO system. The left / right swipe gestures on a document indicate “dislike” / “like” actions. The system also allow users to specify
their reason for “dislike”/*like” the document by swiping through one of the reason bins that the system provide.

However, this gestural input is only a binary input, and can
be considered too vague in terms of feedback: Was the pa-
per liked because it addressed a certain topic? If so, which?
Thus, a simple gestural querying interface can be too prim-
itive and may restrict the user’s ability to articulate precise
queries over the underlying text database.

We solve this problem in BINGO by enabling users to per-
form richer gestures as shown in Figure 1. BINGO generates
and presents reason bins to the user during the swipe action.
By enriching the swipe gesture, the user can now fluidly artic-
ulate why she likes or dislikes a document in the same gesture
as the binary decision. As before, the user simply swipes left
or right, but now through a reason bin. Thus, BINGO pro-
vides users with more control over their query with almost no
extra gestural movements or distractions.

BINGO’s unique gestural interface not only allows users to
easily specify their queries without keyboards, it also pro-
vides an avenue for inexperienced users to perform effective
searches in an unfamiliar domain. As the user decides on the
relevance of a document to her search query, BINGO surfaces
the salient terms of the document with respect to the entire
collection with the help of the reason bins. As the user swipes
through reason bins, BINGO refines a running weighted-
keyword search query. Disliked bins add negatively-weighted
keywords to the query and liked bins add positively-weighted
keywords to the query. This contrasts with manual keyword
or text query specification, which require the user to be famil-
iar with the underlying document collection’s vocabulary [12]
or at least learn new keywords from displayed documents.
BINGO’s bin-generation algorithm is fine-tuned to perform
well given the document collection and the retrieval model.
The algorithm also ensures that reason bins only contain key-
words that lead to query refinement avoiding wasted feed-
back cycles. For a user with little awareness of the data and

the model, swiping through reason bins can be more effective
than manual query construction with keywords.

In this paper, we briefly describe the rich body of work in in-
formation retrieval and search interfaces that BINGO builds
on. We explain our interface design choices for BINGO and
its inner workings. We then evaluate BINGO efficacy for
three search scenarios: targeted search, surveys and explo-
ration. We begin by describing these motivating search sce-
narios and their design implications.

MOTIVATING USE CASES
The following examples of use explain the nuances of search-
ing text-databases on touch interfaces. Note that our work
specifically addresses domain-specific or niche text-databases
and not general web search.

Ilustrative Example 1 — The first-year grad. Consider a
first-year graduate student, with little or no familiarity with
database research, conducting a literature review of spatial
indexing techniques. A seasoned database researcher can
quickly construct a keyword query with the following terms:
‘spatial’, ‘index’, ‘rtree’, ‘Guttman’. However, the first-year
graduate student formulates a less refined query: ‘quickly ac-
cess geographic data’. Depending on the underlying doc-
ument retrieval model, the student may receive documents
that are irrelevant. A quick search on Google scholar lim-
ited to only VLDB documents returns ‘Semantic access: se-
mantic interface for querying databases’ by Rishe et al. and
‘PNUTS: Yahoo!’s hosted data serving platform’ by Cooper
et al. as its top hits. While the remaining documents seem
relevant in that they deal with spatial data, the student has
to read several abstracts before arriving at more refined key-
words such as ‘spatial’, ‘index’, ‘rtree’. Even domain experts
struggle when trying to construct a keyword query with the
goal of reaching a specific document. We have all run into

tip-of-the-tongue situations where we partially recall certain
aspects of a paper but not enough to effectively retrieve it and
spend minutes to hours searching through documents that are
relevant to our search keywords but not exactly what we are
looking for.

The above use case illustrates that for rargeted search, where
users search for a specific document, and surveys, where users
collate a collection of documents relevant to a specific search
topic, the query specification interface must:

1. support an iterative query specification and revision pro-
cess where users can easily refine their search queries as they
observe more results. BINGO allows for efficient revisions
as it automatically refines the query as users like or dislike
documents with or without reasons. Relying on swipes as the
main mode of user query specification minimizes the time of
each revision.

2. surface the underlying vocabulary of the collection and
keywords that both distinguish the current document from the
collection and connect it to other documents. BINGO sug-
gests reason bins with terms most salient to the document al-
lowing for keyword discovery by novices. It also suggests
bins with terms that have a high exploration potential —
terms that retrieve several documents. By modeling search
as a graph traversal problem in our evaluation section, we
demonstrate that reason bins connect documents in collec-
tion to form a well-connected graph with a small diameter.
Thus by swiping through a few bins, one can easily reach any
document within the collection even from a random starting
document.

Ilustrative Example 2 — The game explorer. Consider an
avid gamer, stuck on a ten-hour train ride. He wishes to ex-
plore new games to play on his iPad. A typical search inter-
face such as the one provided by giantbomb.com limits the
user’s interaction and hinders exploration. After providing a
search keyword, the user scrolls through lists of relevant re-
sults that each provide little information. Each result needs to
be clicked through and examined for content. Moreover, the
user cannot eliminate irrelevant material without re-issuing a
new keyword query. The process of entering new keywords
on a screen is tedious and even after refining his query, the
gamer still has to scroll through previously seen irrelevant
material.

The above use case illustrates that for exploration tasks,
where users do not have a precise notion of which docu-
ments are relevant or irrelevant, the query specification in-
terface needs to:

3. support changes in a vaguely-defined query over time.
Like most relevance feedback system, BINGO can construct
a search query without explicit keywords as users swipe left
or right without providing reasons for their choices. As users
swipe through reason bins, new keywords are added to the
query with little need for coherence among the keywords of a
query so far.

4. surface interesting search directions. BINGO prevents
the current query from overwhelming the search direction by

eliminating its keywords from consideration for bins. This al-
lows less salient terms within a document that introduce new
exploration directions to be surfaced as reason bins.

RELATED WORK

BINGO builds upon prior work in gestural query interfaces
by allowing the user to express why they like or dislike a can-
didate document within the same swipe gesture. It also builds
upon work in document recommendation systems, specifi-
cally for the generation of reason bins.

Query Reformulation and Autocompletion

Information retrieval is typically an iterative and interactive
process [35, 13]. Soo et al. [56] posit that users often refor-
mulate queries to better express their information need for a
variety of reasons, focused on the content, format, or resource
representations of the query. Efforts toward assisting users to-
wards this reformulation step include “Did you mean?” fea-
tures in popular search engines such as Google, or Refine Your
Search in Altavista. In the absence of keyboards, reason bins
allow the user to provide granular content feedback to the sys-
tem, allowing it to better understand their information need.

In the context of text-based queries, having the user pick
from a selection of suggested terms [46] has been observed
to be preferred over automatic query expansion [56]. Search
suggestions for library portals have been developed for sev-
eral decades [34], and open-domain query recommendation
systems for Web search have been developed over the past
decade [6, 26]. Most of these systems rely primarily on prior
query logs and click traffic [19, 24, 8]. Autocompletion ef-
forts in database systems [33, 42] can additionally leverage
the structure of query and the schema and data in the database.
Thus, for such settings — where the user cannot express the
query, or is unaware of the data or schema of the dataset [15],
prompting the user with suggestions is extremely valuable.

While query suggestion mechanisms can improve retrieval
performance, users might also be distracted by the query sug-
gestions [3]. Thus, how to show the suggestion terms should
also be factored in to the design of the user interface. From a
touch-focused interface perspective, providing the user with a
means to reformulate or augment their query while still main-
taining the like / dislike functionality was a critical consider-
ation. In contrast to the “hard search” problem, BINGO blurs
the line between query recommendations [59] and result ex-
ploration [40], while providing a convenient and usable in-
teraction method for gestural interfaces. Our goal is to en-
able users to go beyond binary decisions in swipe interfaces:
reason bins ameliorate the tediousness of earlier relevance
feedback / query reformulation systems that required users
to classify multiple documents or select from lists of key-
words. We believe that our results do reveal a sweet spot be-
tween keyword only and pure relevance feedback. Even with
exploratory search, there were users who preferred BinGo
as it led them to new and unexpected games. As more of
our searches are conducted on smartphones and handhelds,
BinGo reintroduces relevance feedback with an effective ges-
tural user interface that minimizes keyword entry yet still con-
structs useful search query terms.

Faceted Search and Exploration

In the context of exploration of documents, the use of faceted
search [60] blends search and browsing [28, 37], wherein
a user navigates through a document collection based on
filters and attributes, is a popular one. Systems such as
Querium [20] have investigated the use of faceted search in
a collaborative setting, combining it with relevance feedback,
query fusion, and a session-based model for search histories.
The generation of facets in such systems is typically done by
presenting the most popular drill-downs to the user [51, 32].
By modeling the query session as a multi-way search tree, it
is also possible to minimize the number of decisions to be
made [11], or to use a cost-based approach [57]. We view the
recommendation of facets to explore as analogous to our bin
generation problem, and draw inspiration from approaches in
faceted exploration.

Recommendation Algorithms

Prior research in text mining, classifiers and recommender
systems [49, 58, 9, 31, 17, 7] has exhaustively investigated
the paper discovery algorithms themselves. We draw from
concepts in feature selection and decision-trees [47, 53], but
focus not on the problem of generating better paper sugges-
tions, but address a deficiency of the querying process: the
gestural input is foo primitive, and thus the user is not able
to express why they liked / disliked a document. In BINGO,
we attempt to glean more information from the user about the
query intent while aiming for the same amount of user effort
as a binary classification task.

Visual Querying

There is a wide body of work for visual search [63], visual
query [16] and visual information seeking [4] interfaces, both
in the desktop [64, 10] and mobile contexts [25]. These sys-
tems focus on the use of rapid filtering to iteratively refine
search parameters, and thus reduce the result set. The role of
guidance [21] is critical in these contexts and has considered
the use of prior query logs [30, 65, 27] and visual / cognitive
aspects [41, 35, 22].

Casual and Touch-based Interfaces

In addition to the use of visual querying, the use of gestures
and touch interfaces for search [36] is heavily motivated by
the low effort required [55] from the users to provide in-
put (which for our system is a single swipe). Selecting rea-
son bins are an example of a crossing-based [2] interaction,
which have been shown to be at least as fast as target-pointing
interaction. A driving principle for our system design is the
minimization of user effort, similar to other casual interfaces:
Li et al. [36] showcase searching using phone screen for con-
tacts, maps or apps by tracing the letter over the screen, while
Schulze et al. [55] focus on context-aware search for nearby
locations and how to better visualize and interact with map
results. TouchViz [23] explores the use of tablets for analyt-
ics, and introduces a FLUID interaction paradigm, enabling
touch actions on the data visualization itself. ScopeG [18]
provides a mobile-friendly interface towards exploring and
comparing data; in contrast, BINGO focuses on one docu-
ment at a time. Kinetica [52] further introduces multitouch
gestures to explore multivariate data — such gestures can be

incorporated into BINGO in the future to provide more nu-
anced feedback, such as strong or weak likes / dislikes.

OVERVIEW OF THE BINGO SYSTEM

Operationally, BINGO is a simple system: a user initiates
a search for relevant documents by providing a seed key-
word?. Using one of many standard document retrieval mod-
els, BINGO returns the most relevant document given the
seed. BINGO differs from standard search interfaces in what
follows.

If the user finds the document relevant, she swipes the doc-
ument to the right (see Figure 1). As the user articulates her
swipe-right gesture, a set of (five) reason bins, along with a
catchall bin, appear at the right end of the screen. Each bin
contains a highly salient term in the current document. If
the user swipes the document through one of the bins, she
indicates to the system that she not only finds the document
relevant but also that she wants to refine or extend her search
query to contain the swiped bin’s term. If the user finds none
of the bins as useful refinements to her query, she swipes
through the catchall bin instead. BINGO will never present
these bins to the user again. Similarly, the user can indicate
that a document is irrelevant by swiping to the left: BINGO
generates reason bins on the left end of the screen and re-
fines the query according to the user’s chosen bin. If the user
does not swipe through a bin, BINGO assumes that the user
swiped through the default catch-all bin. At each iteration,
BINGO constructs a new query, ranks all documents accord-
ing to relevance and suggests the top (seven) documents that
have not been evaluated by the user. The user can save doc-
uments into a reading list for later viewing or save the search
keywords used for further future searches.

Thus, BINGO consists of three main components: (i) a back-
end text database that supports document retrieval and rank-
ing given a query of words, (ii) a gesture-driven query inter-
face that allows users to construct queries by swiping doc-
uments through reason bins and (iii) an efficient bin gener-
ation component that constructs reason bins given past user
bin choices and the document the user is currently viewing.
In this section, we describe each component starting with
BINGO’s interface.

The gesture-driven interface

BINGO is implemented as a web interface. It represents each
document in the central pane of the screen (See Figure 1).
This allows users to quickly grasp the content of the top-
ranked documents without clicking each result. The top seven
documents are presented as clickable tabs at the top of the
screen. The center document can be swiped left to indicate ir-
relevance or right to indicate relevance. A history of past de-
cisions is preserved on the side dislike/like bars. Swiping ges-
tures trigger the appearance of five reason bins and a catchall
bin: the user has to swipe the document through one of these
bins. Swiping a document through a reason bin extends the
user’s running query with the bin’s positively weighted term
if the user swiped the document into the like sidebar and the

31f a user does not seed the search, BINGO returns a document cho-
sen at random from the database

bin’s negatively weighted term if the user swiped the docu-
ment into the dislike sidebar.

BINGO keeps track of which bins have already been selected,
thus displaying fresh bins to the user at each iteration. Addi-
tionally, a swipe through the catchall ‘just yes’/‘just no’ bins
blacklists the reason bins, which were ignored by the user:
these reason bins were not interesting enough to warrant a
swipe through.

Interface Design Considerations
We briefly motivate certain interface design choices particular
to BINGO:

1. Bin presentation on swipe-gesture articulation. Displaying
reason bins on the side of the document panel at all times
creates a visually-cluttered interface and can distract users.
A clean, clutter-free reading panel allows users to quickly
scan and decide whether the document is relevant or not.
Only presenting bins on gesture articulation, thus, encour-
ages users to first decide on the relevance of the document
prior to refining their query with more terms. Thus, as
the user swipes in favor of or against a document, BINGO
presents reason bins.

2. Single bin-selection Only allowing single bin selection is
an intentional design choice: It allows users to make quick
decisions, while still supporting multiple granularities of
decision-making (Yes/No or Yes/No because). Even if
some search accuracy is traded-off* for faster exploration
and search, BINGO is an improvement over pure relevance
feedback models that have no support for reason specifica-
tion.

3. Bin swipe-through vs. tap. Many gesture combinations
can be used to clarify query intent. A user, for example,
can tap the screen to reveal the reason bins and then tap
again on a reason bin to select it. While taps are rela-
tively common and easy gestures, we believe they are not
as suitable as swipes for driving search. First, swipes are
not worse than taps: a recent study by Neglescu et al. re-
veals no significant difference in reaction time or cognitive
load between taps and swipes on smartphones in the ab-
sence of distractions [44]. Second, taps are common ges-
tures that are frequently triggered by accident. Third, many
apps adopt swipe right gestures for approval and swipe left
for disapproval®: the swipe interaction affords an exten-
sion where users can extend their left or right swipe to also
swipe through a reason bin.

4. Bin size. Swiping through a target is constrained by Fitts
Law: the size of and the distance to the target does impact
interaction time [14]. The bins are large targets to enable a
swifter flow through them. They protrude into the reading
panel to minimize the distance the finger needs to travel to
hit one of them. Finally, as the user’s finger approaches a
bin, it turns a deeper shade to visually confirm its selection.

*One can argue that some search accuracy is lost if users are inca-
pable of selecting multiple reasons for liking or disliking a docu-
ment.

Se.g Tinder swipe left to reject, swipe right to like; Yahoo Mail:
swipe left to delete mail, right to mark as read

5. Bin placement. Reason bins are placed on either side of the
display to maintain the external consistency of the swipe
interaction: it is standard convention to swipe screen ob-
jects left to indicate irrelevance and right to indicate rele-
vance. The bins are placed as gates to the dislike/like bars
to enable a smooth swipe through interaction.

6. Scroll-context insensitive bins. An earlier BINGO proto-
type dynamically generated bins depending on the scroll
position of the document. Users, however, found the lack
of bin permanence on scrolling confusing. Therefore, we
trade bin diversity for usability and generate a small num-
ber of permanent bins (k = 5) for each document.

7. Top-7 documents and top-5 bins. Our choice of showing
only top-7 documents and top-5 bins are motivated by stud-
ies on human memory capacity [66]. This is especially
critical for reason bins: a full swipe gesture from the mid-
point of a screen to either side takes a few milliseconds and
in the course of the swipe, the user has to not only recog-
nize the bins, but choose one to refine his/her query with.
Moreover the relatively small screen sizes of keyboard-less
devices allows little room for more than five to seven bins.

The backend text database

BINGO is built on a standard text database: a text document is
represented as a bag of words. Documents are preprocessed
to filter out stop words and to compute the term-frequency, in-
verse document frequency (tfidf) of each word within the doc-
ument. Words that appear more often (high term-frequency)
within a document are more representative of the document as
long as they do not appear frequently within the document set
(high inverse document frequency). Many retrieval models
rely on tfidf to score and rank a document’s relevance given a
user query of search keywords. For each document, we sort
and stores its words from high tfidf scores to low scores to
enable efficient bin generation.

We also filter out words with poor exploration potential:
words that appear in very few documents. Since the purpose
of reason-bins is to extend (refine or relax) the current search
query, terms are selected for bins only if they appear in 6 or
more documents®. Algorithm 1 describes the preprocessing
of each document in the collection.

The bin generation algorithm

The bin generation algorithm is intentionally simple and eas-
ily integrates with existing document retrieval models. Given
the document d under consideration, we select its £ = 5 most
salient terms as bins. In the vector space document retrieval
model, these are terms with a high tfidf score — terms that ap-
pear often in the document but not as often in the collection
of documents D and hence distinguish the document from
others. The algorithm eliminates terms that have been pre-
viously selected as query terms or terms that have been pre-
viously presented as bins and ignored by the user, I, when
determining the relevancy of another document.

For our user tests, we set 6 to be five documents. This also proved
useful in eliminating garbled words that were unique to a document
due to poor OCR. This parameter is easily configurable

Algorithm 1 Document Preprocessing

stop-words « {is, are, and, ...}
connecting-words < {words w € collection D s.t. w
appears in at least # = 5 documents}

procedure PREPROCESS(document collection D)
for each document d € D do
word-score < {}
for each word w € d.getwords() do
if w € connecting-words - stop-words then

tf < normalized frequency of w in d
idf < log|D|—log|d' € D:w € d'|
word-score.add(w: tf * idf)

d.candidate-bins <+ sort(word-score, values,

descending).keys()

Algorithm 2 Bin Generation Algorithm

k < 5 (number of bins to generate)

procedure GENERATEBINS(document d, query Q, ig-
nored bins I)

bins < d.candidate-bins - @ - I

return top(bins, k)

Bin generation needs to occur instantly in order to ensure
an interactive query experience. In the interest of this prop-
erty, the bulk of bin-generation — the elimination of stop
words and words that do not appear in multiple documents,
and the computation of tfidf scores and sorting of terms in
a document by their tfidf scores — is done as a preprocess-
ing step. Excluding preprocessing, online bin generation re-
quires O(|I| 4+ |@| + k) time. Thus, bin generation runs in-
dependently of the size of the current document d (number of
words) , or collection D (number of documents).

Document ranking algorithm

For each document that the user reviews, BINGO automati-
cally refines the query. By constantly and automatically re-
fining the user query with each interaction, we not only can
lead the user to a target document more efficiently, but we
can also support collection exploration by presenting differ-
ent documents as the query gradually changes. BINGO is
merely a query specification and refinement layer over stan-
dard keyword-query document retrieval models.

In our current implementation, we support both the vec-
tor space model with cosine similarity where each word
is weighted by its term-frequency, inverse document fre-
quency [50] and the query likelihood model with Jelinek-
Mercer smoothing when estimating the maximum likelihood
of a word in a document’. We also support Rocchio rele-
vance feedback to augment our search queries when users

"In our implementation, we found a smoothing factor of A = 0.9 to
perform well for our test datasets

swipe documents through the catchall bins®. For a primer

on document retrieval models, we refer the reader to [54].

EVALUATION
We evaluate BINGO, a novel search interface, for the follow-
ing scenarios:

1. targeted (tip-of-the-tongue) search: users look for a target
document in a database),

2. survey search: users retrieve all documents relevant to a
specific search task, and

3. exploration: users have no explicit search task specifica-
tion and are exploring the collection for documents that
might be of personal interest.

To test the first scenario, we simulate user behavior over stan-
dard keyword search and BINGO and compare the search ef-
ficiency of both interfaces: a more efficient interface requires
less interaction effort to reach the target document. We com-
pute interaction effort as the number of taps required to add
a keyword to a query or the number of swipes. We argue that
our simulation and comparison framework provide a cost-
effective means to rapidly test different search interfaces and
different bin generation algorithms as well as simulate dif-
ferent user behaviors, while still providing representative test
results. Note that we cannot force users into tip-of-the-tongue
situations, which necessitates a simulated user-study.

We conduct user studies to compare user performance on both
search interfaces for the remaining scenarios. We evaluate
precision — proportion of documents a user added to his/her
reading list to documents the user reviewed — and revision
time — time between subsequent interactions such as swiping
through a reason bin or typing a new keyword. These provide
us with quantitative measures of BINGO’s performance as a
query specification tool in comparison to keyword specifica-
tion (KWD) or pure relevance feedback with no reasons with
simple swipes (SWP). We qualitatively evaluate BINGO’s us-
ability with Likert-test and open-ended questions’.

In our evaluation, we focus on two domain-specific data
sets'?. Our choice of testing data sets is motivated by our
need to find a pairing of data set and users, where users were
somewhat well-versed in the data set’s topic. The VLDB
data set of database systems research papers and the Giant-
Bomb games data set are easily accessible and together cover
the wide range of applications that BINGO was designed for.
Both data sets also had an accessible user base for testing:
students of a graduate database class and users with some in-
terest in video games.

8With Rocchio relevance feedback, we set o = 1 for the primary
query vector of user selected keywords/bins, 5 = 0.75 for words
extracted from relevant documents and v = —0.25 for words ex-
tracted from irrelevant documents

One can also evaluate BINGO with cognitive load tests such as
the Nasa-TLX test. In this paper we first-and-foremost focus on
the efficacy of BINGO as a query specification interface and hence
present precision and revision time results.

"%We do not expect BINGO to be used as a tool for specifying general
web search queries. Instead it is more appealing for limited data
sets such as scholarly, legal articles, niche sites and even product
databases provided they have descriptive text meta-data.

The underlying document retrieval model used for the follow-
ing experiments is the vector space model with cosine simi-
larity. Queries are represented as weighted keywords. We
use the standard Rocchio model for pure relevance feedback
without reason bins (SWP). Since BINGO is not a novel doc-
ument retrieval model, but rather a gesture-driven query spec-
ification technique where generated queries are weighted key-
words, we believe our results generalize to other document
retrieval and feedback models that utilize keyword queries.

Targeted Search Tasks

Before we can describe our experimental setup, we must first
explain how bins induce links over a collection of documents.
Consider a graph where each document d is a node with an
out-degree of at most k edges: an edge (d, d’) for each of its
k (positive) reason bins. Each reason bin acts as a single-term
search query and forms an edge between d and the top ranked
document d’ returned by that query.

Ideally, this bin-induced graph has no disconnected com-
ponents, has a small diameter and a small average shortest
path between any two documents. A connected graph entails
that regardless of which document a user starts in, eventu-
ally he/she will arrive at the required target document. The
graph’s diameter provides a rough measure of the worst case
number of swipes a user has to make to reach the target doc-
ument. Finally, the average shortest path provides a rough es-
timate of the number of swipes between any two documents.
Even though these measurements are not necessarily reflec-
tive of real performance, they allow us to quickly determine
the viability of BINGO for targeted search queries.

We conducted a graph analysis of 2,035 VLDB PDF docu-
ments that produce little OCR errors when converted to plain
text. The dataset had 300 documents with no in-degrees; the
rest of the dataset was fully connected. The diameter of the
connected components of the graph was 14 edges and the av-
erage shortest path between any two connected documents
was 4.6 edges.

Based on the results of this preliminary graph analysis, it ap-
pears that the VLDB dataset is fluid enough, such that even if
a user starts a search far away from the target document, with
a few swipes he/she will eventually arrive at the target.

To compare the performance of BINGO against keyword
search at arriving at a target document, we randomly chose
200 target documents. We chose the highest ranked tfidf word
from the target document that appears in at least 100 docu-
ments to be the seed keyword that we start all searches with.
The seed behaves as a topic term if it appears in many doc-
uments. In certain cases (8 documents), our seed keyword
causes our target document to appear first in the search, we
drop such cases from our results.

We simulate keyword specification for two types of users:
(i) the expert user and (ii) the inexperienced user [45]. Ex-
pert users tend to use specific keywords in their search,
whereas inexperienced users usually conduct their searches
using more generic (or less specific) keywords. In our tests,
the simulated expert user adds one keyword at a time to
his/her search query: these keywords are added in descending

169

§ 50 i @Inexperienced
1

g 40 OExpert

30
20
10

1 2 3 4 5 6 7 8 9 10 15 20 25 30
Number of Keywords

Figure 2. Number of keywords provided by a simulated expert or an
inexperienced user to reach a target document chosen at random. The
dashed vertical line indicates a change of histogram bin-width on the
X-axis.

order of tfidf score from the 50 highest ranking tfidf terms of
the target document. The inexperienced user also adds one
keyword at a time to his/her search query from the 50 highest
ranking tfidf terms of the target document but the words are
inserted in descending order of collection frequency: while
the expert user can refine the query with specific terms (e.g.
rtree, spatial index, etc.), the inexperienced user will tend to
pick more generic terms (e.g. query, geographic data). Fig-
ure 2 is a histogram of the number of keywords specified to
reach different target documents. While often the simulated
expert can reach the target document using only one or two
keywords, the inexperienced user often has to provide several
keywords.

The words chosen by the simulation illustrate that it behaves
close to our intuition. For example to reach the target doc-
ument: ‘M-tree: An Efficient Access Method for Similarity
Search in Metric Spaces’, the simulated expert user speci-
fied {triangle, mtree}, the inexperienced user specified {tree,
search, object, index, node, cover, partition, metric}; to reach
the target document: ‘Code Generation for Efficient Query
Processing in Managed Runtimes’, the expert user specified
{foreach, ling}, the inexperienced user specified {foreach,
query, object, input, memory, source, express, program }.

We simulate user behavior over BINGO as follows: given a
choice of k£ reason bins on the current document, the simu-
lated user picks the bin with the highest tf-idf score in the
top-50 tf-idf terms of target document or swipes the ‘catch-
all’ bin. Each swipe through a reason bin adds the bin’s term
to the running search query.

Note, that since the choice of keywords is limited to the top
fifty keywords in the target document, the keyword search
simulations maintains an unfair advantage over BINGO’s
simulations where terms are generated from the current doc-
ument and not the target document.

We successfully terminate the search when the target docu-
ments appears in the top seven ranked documents. If more
than 100 keywords or swipes are required to reach the target,
we terminate the search and deem it a failure.

Figure 3 compares the performance of BINGO against key-
words in terms of interaction cost. While each search requires

Bk=5 reason bins

=N
o o

=] ——

1 2 83 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Swipes

(a) Swipes to reach target document in the VLDB dataset with 5 reason bins

IS
S

Zk=10 reason bins

/

2N 7
10 i w

1 2 3 4 5 6 7 8 9 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

(b) Swipes to reach target document in the VLDB dataset with 10 reason bins Number of Swipes

z 50
§ 40 @ Inexperienced
§3° OExpert

ﬂ—zr—.—{\

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Taps

(c) On-screen keyboard taps to reach target document in the VLDB dataset

Figure 3. A histogram of the interaction cost of reaching a target docu-
ment through (a) swiping with k£ = 5 reason bins, (b) with £ = 10 reason
bins, and (c) tapping keywords for expert and inexperienced users. The
dashed vertical line indicates a change of histogram bin-width on the
X-axis.

on average 1.2 keywords from the expert user to 4.9 keywords
from the inexperienced user, the interaction cost in terms of
characters tapped on an on-screen keyboard ranges from 8.6
taps to 34 taps respectively. The interaction cost of BINGO
is much lower: 16.1 swipes are required on average with 5
reason bins and 11.8 swipes with 10 reason bins. Moreover,
taps have a longer tail compared to swipes.

While increasing the number of reason bins reduces the av-
erage number of swipes, the reduction is not high enough to
overweigh the costs of interface clutter: doubling the bins
does not halve the number of swipes.

From these results we conclude that BINGO provides a sweet
spot in terms of the interaction effort required to conduct a
targeted search when users are not familiar or experienced
with a particular dataset.

Survey Search Tasks

We conducted a comparative user study of BINGO’s search
interface against keyword-only search interfaces (KWD) and
swiping without reason bins (SWP). These interfaces (KWD
and SWP) represent two ends of the interface spectrum.
While the former allows for full expressiveness by using key-
board input, the latter allows for fast and convenient interac-
tion, but does not allow for fine-grained articulation of the
user’s input. To control for aesthetics, we designed KWD
and SWP to have aesthetics similar to those of BINGO (See
Figure 4). Note, SWP used Rocchio relevance feedback to
build search queries from like/dislike decisions.

Our goal in this study was to observe how much time a user
spends modifying his/her query at every search iteration until
he/she is satisfied with the result given a survey search task.
This revision time is a measure of how effective an interface is
at enabling users to refine their search query. We also observe
precision or how many documents are added to a reading list
given the total number of documents a user reviewed.

Participants and Methods

We recruited 20 participants. Ten subjects were students fa-
miliar with database concepts. They were assigned VLDB
search tasks, which involved conducting a literature review
on 2,035 VLDB papers published between 1975 and 2013.
The remaining subjects were students with sufficient digi-
tal literacy to conduct online searches. They were assigned
game search tasks on the GiantBomb games database, which
consisted of 44,150 game descriptions scraped from Giant-
Bomb.com. None of the subjects have used BINGO before.

We first presented a video tutorial of BINGO. Each user
then had ten minutes to freely use all three search interfaces,
BINGO, KWD, SWP to get familiar with them. Each user
was then asked to perform two search tasks. In each inter-
face, users had 5 minutes to complete each task. The order
of interfaces and tasks tested for each user was randomized
to mitigate user fatigue and learning effects. Users also took
sufficient breaks between each task. The tasks were:

Q1-GAMES. Find as many war games involving ships or air-
craft carriers as you can.

02-GAMES. Find as many decision-making or long-term
strategy multi-player games.

Q3-VLDB. Find as many papers as you can that discuss
techniques to quickly rank and recommend £ tuples in a
database.

Q4-VLDB. Find as many papers as you can that analyze ve-
hicle tracking data.

Revision Time

For each user, we observed the time between interactions
(swiping through a bin with BINGO, adding a new keyword
with KWD, simply swiping left/right with SWP, etc). Since
users have different reading behaviors and reading speeds —
some users tend to read each document more carefully —
we normalized the time between interactions by the user’s
longest interaction interval. A user’s revision time for a given
query task on a particular tool is simply the mean normalized
inter-interaction time.

Figure 5 illustrates the average of all users’ revision time per
interface and search task combination. Users review docu-
ments with SWP the fastest. A two-factor repeated-measures
mixed analysis of variance of revision time reveals only a sig-
nificant main effect of tool used: F3 119 = 35.020, p-value
< 0.001. No other main effects (dataset, query task or sub-
jects) or interaction effects were significant. We then con-
ducted two-tailed t-tests on all pairwise comparisons. Users
spend significantly more time in between interactions when
using KWD compared with BINGO and SWP hinting that it
requires time to physically type keywords and think of new
ones (p-values < 0.001). The slight increase in revision time
when using BINGO compared to SWP is also significant (p-
value = 0.02).

Precision

We measure precision as proportion of documents a user
added to his/her reading list given all documents recom-
mended by the interface. A precision value of one indicates

) swipe Action Man: Search for Basa | Acton Man: Rad o iiand | True
swipe Acton Mar: Search for Base | Acton Man: Aad on fiand | True | Doube Fine Happy Acton Action Mar: Operaton Eevator Acton Widire suggests: X
Suggests: | X X Love.. | Treater Exvame. Fotums. Words. :

Action Man:

Action Man: Search for Base X

Search for Base X o Folow

@ Edit his wii page

(@) KWD Interface. Users can provide both positive and (b) SWP Interface. Users can only swipe a document left to
negative search keywords. dislike, right to like. No reason bins or keywords supported

Figure 4. KWD and SWP interfaces are designed to match the aesthetics of BINGO. The underlying document retrieval model is preserved across all
interfaces (hence we support negative search keywords in KWD). SWP uses Rocchio relevance feedback to construct search query vectors that use the

underlying document retrieval model.

OKWD B@SWP BBinGo

Jnli b

Search Tasks

Revision Time
o o o
» ()] ©

o
N

Figure 5. Average revision time per interface/task combination. Q)1 and
(@2 are search tasks on the games dataset, and)3 and Q4 are search
tasks on the VLDB dataset.

that the user added all recommended documents to his/her
reading list; while a precision value of zero indicates the user
did not add any of the recommended documents to his/her
reading list.

Figure 6 illustrates average precision among all users for a
particular search task, interface combination. We observe that
BINGO is generally competitive with KWD and that both
BINGO and KWD appear to outperform SWP. A two-factor
repeated-measures mixed analysis of variance of precision re-
veals a significant main effect of tool used, F5 119 = 16.181,
p-value < 0.001, and a significant main effect of dataset,
Iy 119 = 6.261, p-value = 0.02 No other main effects (
query task or subjects) or interaction effects were significant.
We then conducted two-tailed t-tests on all pairwise compar-
isons. The slight precision differences between KWD and
BINGO are significant (p-value = 0.05) and the differences
between KWD and BINGO, and SWP are significant (p-
values < 0.001)'".

From these results, we conclude that BINGO provides a good
balance between the revision speed that SWP provides and
the search precision that KWD provides.

We also conducted a post-study questionnaire and asked
users to rate the ease of use of the different interfaces on a
10-point Likert scale: users found SWP the easiest to use
(uvips = 7.5, UGaMEs = 1.8, hkely due to the lack of
an additional interaction target to cross-through), followed
by BINGO (pvips = 6.8, ugames = 7.2) and then KWD
(uwvips = 5.7, pcames = 5.5). This result is particularly

UPairwise precision comparisons on tools after a per data set break-
down reveal no significant difference between KWD and BINGO on
the VLDB dataset and no significant difference between KWD and
SWP on the games dataset)

s OKWD BSWP BBinGo
@ 0.8
[
0
a 0.6
0.4 ?
0.2 %
7
0
Qal Q2 Q3 Q4

Search Tasks

Figure 6. Average precision per interface/task combination. (); and Q2
are search tasks on the games dataset, and (3 and Q4 are search tasks
on the VLDB dataset.

compelling given how conditioned users are on using basic
keyword specification interfaces for search.

Users were also asked to rate the quality of recommendations
made by the different search interfaces on a 10-point Likert
scale: users found KWD to provide the highest recommen-
dation quality (uyipp = 7.6, pigames = 7.4), matched by
BINGO (uyrps = 7.8, pgames = 7.2) and followed by SWP
(uvips = 6.1, ugames = 5.8). This qualitative finding cor-
roborates our earlier quantitative precision findings.

Exploration

Finally, we evaluated the effectiveness of BINGO as an ex-
ploratory search interface through a comparative user study
with KWD. Unlike the previous user-study, the search task
we tested here was open-ended. We asked the participants to:

E1-GAMES. Find as many games that you would like to play
or suggest to others in less than 15 minutes.

Our goal in this study was to study how effective BINGO is at
guiding exploration tasks by providing new search directions.

Participants and Methods

We recruited 21 new participants. The subjects were all
students with sufficient digital literacy to conduct online
searches and were familiar with video games. None of the
subjects used BINGO before. The participants were split
into two groups: a control group of 11 participants that used
KWD only and a test group that used BINGO. As before,
we presented a 5-minute training video tutorial to the users.
We then asked users to play with their assigned tool for five
minutes. The users directed this playtime.

Games Saved
Figure 7 illustrates the number of games saved (i.e. added to
the reading list) for each user per user group. We hypoth-

KD O e O
snce @@ G000 @ O

0 10 20 30 40 50 60

F 0
<

Number of Games added to Reading List

Figure 7. Number of recommendations added to the reading list while
exploring the Games dataset

esized that BINGO will outperform KWD in terms of en-
abling users to explore more (interesting) games. However,
the data fails to support this hypothesis: it shows no signifi-
cant difference between the number of games saved among
the different user groups. A post-study survey allowed us
to better understand user exploration behavior. With KWD,
we asked users to rate on 5-point Likert scale whether they
chose keywords that reflected aspects of the game in view
that they liked/disliked. Users expressed this to be the case
(n = 4.18). Users also found it somewhat easy to come up
with such descriptive words (px = 3.73). With BINGO, users
somewhat found the bins to reflect aspects of the game that
they liked/disliked (u = 3.1).

We asked users if they chose keywords based on what they
wanted to see more/less of in future recommendations. Users
found this also to be the case (u = 4.64) and it was easy to
come up with such filters (¢ = 4.27). With BINGO, users
somewhat found the bins to reflect aspects of the game that
they would have liked to see more or less of (1 = 3.6).

Finally, we asked users if they chose keywords that would
open up their search space to new and interesting directions.
Users did not find this usual (1+ = 3.18) and reported diffi-
culty in coming up with such keywords (¢ = 2.91). With
BINGO, users found the bins more helpful in providing new
and interesting search directions (¢ = 3.2).

We asked users to expand on their ratings. With KWD, one
user commented that game descriptions provided him with
inspiration to add new keywords. Some users chose keywords
specific to games they already played and used the interface to
look for those games and explore from there. As one user puts
it, “the keywords allowed me to take control in the direction
that I want to go but I wouldn’t necessarily say that it took me
in new interesting directions.” We believe game recognition
with KWD led users to save more games for later.

With BINGO, some users were expecting bins to provide gen-
eral concepts instead of document-specific terms. One user
commented: “[bins] were related to the aspects I wanted
to see more of in other games but were somewhat limited
e.g. monkey was followed by banana but lacked the gen-
eral description level - animals”. One user found that BINGO
quickly narrowed down the search results to a set of very
similar games, which made exploration hard: “when I se-
lected the [bin] London, only games about London showed
up - very heavy filter. Perhaps UK ... should be there, too.
Moreover it was hard to switch to a new area, ... London re-
lated [games] kept showing up for the next 10 results”. Some
users found reason bins to provide interesting suggestions to

expand the search. One user commented: “interesting games
that I wouldn’t have searched for popped up.” It appears that
if a reason bin led to a relevant new area, users were pleased
and if the reason bin led to a new area that the user lost interest
in on the first recommendation, users were quite disgruntled.
Note, the current BINGO prototype does not support several
features such as removing selected bins from the search.

We also asked users if they wanted to see less reason bins (1)
or more reason bins (5) and the average user rating was 2.5.
Many users wanted to keep the number of bins as is.

We share with the reader a few remarkable users comments:
“Using google to search has a certain art to it, or using key-
word search in general. In order to convince people to forgo
the skills they’ve learned in making keyword search engines
return good answers, the search recommendations and bin
words would have to be way better”. This comment high-
lights the extent of user training bias against innovating in the
search space. One user commented on BINGO “On Mobile -
YES. Very intuitive, Tinder-like. ... us lazy humans. :)”

CONCLUSION

In this paper, we recognize that popular solutions to querying
over text databases can be seen on a spectrum — traditional
keyword search allows for free form input but tedious and
slow to use. On the other end, binary “like / dislike” clas-
sification of documents, popular with recommender systems,
allows users to rapidly sift through a large number of doc-
uments. This model is also very amenable to swipe-based
gestures. BINGO considers a novel best-of-both-worlds solu-
tion, allowing for querying of text databases to be performed
entirely using gestures. By integrating “reason bins” into a
swipe-based gesture, users are able to articulate the reason
for liking or disliking a paper in a fluid and efficient gesture.

Our evaluation considers multiple search cost models, keep-
ing in mind user tradeoffs between performing keyword input
and gestures. Second, we perform user studies over multiple
variants of the interface, evaluating the usage of our system
over a series of objective and subjective metrics. We show
that BINGO is not only easy to use, but also allows for more
efficient querying over text databases. We show that users
find its result quality comparable to keyword input with min-
imal added effort compared with simple swiping gestures.

FUTURE WORK

Going forward, there are several interesting avenues of future
work. From a text database querying standpoint, we can look
towards alternative signals for bin generation such as prior
searches. We can also modify the weights of keywords added
to a query based on how hesitant a user was when selecting a
reason bin (estimated by swiping duration). From a UI per-
spective, we wish to consider different visual layouts for the
bins depending on the actual form factor of the input device,
such as radial and fisheye menus. This would allow us to opti-
mize the gestures for either thumb-based interaction on small
smartphones, or multi-finger gestures on large touch screens.

Acknowledgements We acknowledge the support of the U.S.
National Science Foundation under awards IIS-1420941, IIS-
1422977, 11S-1527779, and CAREER 1IS-1453582.

REFERENCES

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

Tinder. https://www.gotinder. com.

Accot, J., and Zhai, S. More than dotting the i’'s —
foundations for crossing-based interfaces. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 02, ACM (New
York, NY, USA, 2002), 73-80.

. Adamczyk, P. D., and Bailey, B. P. If not now, when?:

the effects of interruption at different moments within
task execution. SIGCHI (2004).

. Ahlberg, C., and Shneiderman, B. Visual information

seeking: tight coupling of dynamic query filters with
starfield displays. SIGCHI (1994).

. Anderson, M. Technology device ownership: 2015.

http://www.pewinternet.org/2015/10/29/
technology—-device-ownership-2015/, October 2015.

. Baeza-Yates, R., Hurtado, C., and Mendoza, M. Query

recommendation using query logs in search engines.
EDBT (2005).

. Baeza-Yates, R., Ribeiro-Neto, B., et al. Modern

information retrieval. ACM press New York, 1999.

. Balfe, E., and Smyth, B. Improving web search through

collaborative query recommendation. ECAI (2004).

. Basu, C., Cohen, W. W., Hirsh, H., and Nevill-Manning,

C. Technical paper recommendation: A study in
combining multiple information sources. JIPM (2011).

Bates, M. J. The design of browsing and berrypicking
techniques for the online search interface. OIR (1989).

Bhamidipati, S., Kveton, B., and Muthukrishnan, S.
Minimal interaction search: Multi-way search with item
categories. ITWP (2013).

Bhavnani, S. K. Domain-specific search strategies for
the effective retrieval of healthcare and shopping
information. In CHI ’02 Extended Abstracts on Human
Factors in Computing Systems, CHI EA *02, ACM (New
York, NY, USA, 2002), 610-611.

Bruza, P., McArthur, R., and Dennis, S. Interactive
internet search: keyword, directory and query
reformulation mechanisms compared. SIGIR (2000).

Burno, R. A., Wu, B., Doherty, R., Colett, H., and
Elnaggar, R. Applying fitts’ law to gesture based
computer interactions. Procedia Manufacturing 3
(2015), 4342 — 4349.

Capra, R. G., and Marchionini, G. The relation browser
tool for faceted exploratory search. JCDL (2008).

Catarci, T., Costabile, M. F., Levialdi, S., and Batini, C.
Visual query systems for databases: A survey. JVLC
(1997).

Cortes, C., and Vapnik, V. Support-vector networks.
Machine learning (1995).

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

. Deloatch, R., Gou, L., Kau, C., Mahmud, J., and Zhou,

M. Scopeg: A mobile application for exploration and
comparison of personality traits. In Companion
Publication of the 2 1st International Conference on
Intelligent User Interfaces, IUI *16 Companion, ACM
(New York, NY, USA, 2016), 102-105.

. Dignum, S., Kruschwitz, U., Fasli, M., Kim, Y., Song,

D., Beresi, U. C., and De Roeck, A. Incorporating
seasonality into search suggestions derived from intranet
query logs. WI-IAT (2010).

Diriye, A., and Golovchinsky, G. Querium: a
session-based collaborative search system. In European
Conference on Information Retrieval, Springer (2012),
583-584.

Downey, D., Dumais, S., Liebling, D., and Horvitz, E.
Understanding the relationship between searchers’
queries and information goals. JIKM (2008).

Downey, D., Dumais, S. T., and Horvitz, E. Models of
searching and browsing: Languages, studies, and
application. IJCAI (2007).

Drucker, S. M., Fisher, D., Sadana, R., Herron, J., and
schraefel, m. Touchviz: A case study comparing two
interfaces for data analytics on tablets. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, CHI 13, ACM (New York, NY,
USA, 2013), 2301-2310.

Dupret, G., and Mendoza, M. Automatic query
recommendation using click-through data. PPAI (2006).

Girod, B., Chandrasekhar, V., Chen, D. M., Cheung,
N.-M., Grzeszczuk, R., Reznik, Y., Takacs, G., Tsai,
S. S., and Vedantham, R. Mobile visual search. Sig.
Proc. Magazine (2011).

He, Q., Jiang, D., Liao, Z., Hoi, S. C., Chang, K., Lim,
E.-P, and Li, H. Web query recommendation via
sequential query prediction. ICDE (2009).

Holscher, C., and Strube, G. Web search behavior of
internet experts and newbies. Computer Networks
(2000).

Hub, A., Blank, D., Henrich, A., and Muller, W.
Picadomo: Faceted image browsing for mobile devices.
CBMI (2009).

Idreos, S., and Liarou, E. dbtouch: Analytics at your
fingertips. In CIDR (2013).

Jansen, B. J. Search log analysis: What it is, what’s been
done, how to do it. LIS research (2006).

Joachims, T. Text categorization with support vector
machines. Springer, 1998.

Kashyap, A., Hristidis, V., and Petropoulos, M. Facetor:
cost-driven exploration of faceted query results. JIKM
(2010).

Khoussainova, N., Kwon, Y., Balazinska, M., and Suciu,
D. Snipsuggest: context-aware auto-completion for sql.
VLDB (2010).

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Kriewel, S., and Fuhr, N. Adaptive search suggestions
for digital libraries. Springer, 2007.

Lau, T., and Horvitz, E. Patterns of search: analyzing
and modeling web query refinement. In UM99 User
Modeling. Springer, 1999, 119-128.

Li, Y. Gesture search: a tool for fast mobile data access.
UIST (2010).

Lu, S., Mei, T., Wang, J., Zhang, J., Wang, Z., Feng,
D. D., Sun, J.-T., and Li, S. Browse-to-search. ICME
(2012).

MacKenzie, I. S., and Soukoreff, R. W. Text entry for
mobile computing: Models and methods, theory and
practice. Human—Computer Interaction (2002).

MarketingCharts. In the us, time spent with mobile apps
now exceeds desktop web access.
http://www.marketingcharts.com/online/in-the-
us—-time-spent-with-mobile-apps—now-exceeds-
the-desktop-web-41153/, March 2015.

Morton, K., Balazinska, M., Grossman, D., and
Mackinlay, J. Support the data enthusiast: Challenges
for next-generation data-analysis systems. VLDB (2014).

Nakarada-Kordic, 1., and Lobb, B. Effect of perceived
attractiveness of web interface design on visual search of
web sites. SIGCHI (2005).

Nandi, A., and Jagadish, H. Assisted Querying using
Instant-response Interfaces. SIGMOD (2007).

Nandi, A., Jiang, L., and Mandel, M. Gestural Query
Specification. VLDB (2014).

Negulescu, M., Ruiz, J., Li, Y., and Lank, E. Tap, swipe,
or move: Attentional demands for distracted smartphone
input. In Proceedings of the International Working
Conference on Advanced Visual Interfaces, AVI 12,
ACM (New York, NY, USA, 2012), 173-180.

Nelson, M., Shaw, M., and Strader, T. AMCIS 2009.
Lecture notes in business information processing.
Springer, 2009.

Ortega, R. E., Avery, J. W,, and Frederick, R. Search
query autocompletion. US Patent 6564213 (2003).

Peng, H., Long, F., and Ding, C. Feature selection based
on mutual information criteria. TPAMI (2005).

Realmac Software. Clear - tasks, reminders & to-do
lists. http://realmacsoftware.com/clear.

Resnick, P., and Varian, H. R. Recommender systems.
CACM (1997).

Robertson, S. E., and Walker, S. Okapi/keenbow at
trec-8. TREC (1999).

Roy, S. B., Wang, H., Nambiar, U., Das, G., and
Mohania, M. Dynacet: Building dynamic faceted search
systems over databases. ICDE (2009).

52.

53.

54.

55.

56.

57.

58.

59.

61.

62.

63.

64.

65.

66.

Rzeszotarski, J. M., and Kittur, A. Kinetica: Naturalistic
multi-touch data visualization. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in
Computing Systems, CHI 14, ACM (New York, NY,
USA, 2014), 897-906.

Safavian, S. R., and Landgrebe, D. A survey of decision
tree classifier methodology. SMC (1991).

Salton, G., and Buckley, C. Term-weighting approaches
in automatic text retrieval. JIPM (1988).

Schulze, F., and Woerndl, W. Using touch gestures to
adjust context parameters in mobile recommender and
search applications. CTS (2011).

Soo Y. Rieh, H. X. Analysis of multiple query
reformulations on the web: The interactive information
retrieval context. IPM (2006).

Stefanidis, K., Pitoura, E., and Vassiliadis, P. On
relaxing contextual preference queries. MDM (2007).

Sugiyama, K., et al. Scholarly paper recommendation
via user’s recent research interests. JCDL (2010).

Telang, A., Chakravarthy, S., and Li, C. Querying for
information integration: How to go from an imprecise
intent to a precise query? COMAD (2008).

. Tunkelang, D. Faceted search. Synthesis Lectures on

Information Concepts, Retrieval, and Services (2009).

Ward, D. J., Blackwell, A. F., and MacKay, D. J. Dasher
— a Data Entry Interface Using Continuous Gestures and
Language Models. UIST (2000).

Wikipedia. Google Now, 2016.
https://en.wikipedia.org/wiki/Google_Now,
[Online; accessed 6-Jan-2017].

Wolfe, J. M., and Gancarz, G. Guided search 3.0. Basic
and clinical applications of vision science (1997).

Xu, S., Jin, T., and Lau, F. A new visual search interface
for web browsing. WSDM (2009).

Zha, Z.-J., Yang, L., Mei, T., Wang, M., and Wang, Z.
Visual query suggestion. /ICME (2009).

Zhai, S., and Milgram, P. Human performance
evaluation of manipulation schemes in virtual
environments. VR (1993).

