
Organic Databases

H.V. Jagadish, Arnab Nandi, and Li Qian�

University of Michigan
Ann Arbor, MI, USA

Abstract. Databases today are carefully engineered: there is an expensive and
deliberate design process, after which a database schema is defined; during this
design process, various possible instance examples and use cases are hypothe-
sized and carefully analyzed; finally, the schema is ready and then can be popu-
lated with data. All of this effort is a major barrier to database adoption.

In this paper, we explore the possibility of organic database creation instead
of the traditional engineered approach. The idea is to let the user start storing data
in a database with a schema that is just enough to cove the instances at hand. We
then support efficient schema evolution as new data instances arrive. By designing
the database to evolve, we can sidestep the expensive front-end cost of carefully
engineering the design of the database.

The same set of issues also apply to database querying. Today, databases ex-
pect queries to be carefully specified, and to be valid with respect to the database
schema. In contrast, the organic query specification model would allow users to
construct queries incrementally, with little knowledge of the database. We also
examine this problem in this paper.

1 Motivation

Database technology has made great strides in the past decades. Today, we are able
to process efficiently ever larger numbers of ever more complex queries on ever more
humongous data sets. We can be justifiably proud of what we have accomplished.

However, when we see how information is created, accessed, and shared today,
database technology remains only a bit player: much of the data in the world today
remains outside database systems. Even worse, in the places where database systems
are used extensively, we find an army of database administrators, consultants, and other
technical experts all busily helping users get data into and out of a database. For al-
most all organizations, the indirect cost of maintaining a technical support team far ex-
ceeds the direct cost of hardware infrastructure and database product licenses. Not only
are support staff expensive, they also interpose themselves between the users and the
databases. Users cannot interact with the database directly and are therefore less likely
to try less straightforward operations. This hidden opportunity cost may be greater than
the visible costs of hardware/software and technical staff. Most of us remember the day
not too long ago when booking a flight meant calling a travel agent who used magic
incantations at an arcane system to pull up information regarding flights and to make
bookings. Today, most of us book our own flights on the web through interfaces that

� Supported in part by NSF under grant IIS-1017296.

S. Kikuchi et al. (Eds.): DNIS 2011, LNCS 7108, pp. 49–63, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 H.V. Jagadish, A. Nandi, and L. Qian

are simple enough for anyone to use. Many enjoy the power of being able to explore
options for themselves that would have been too much trouble to explain to an agent,
such as willingness to trade off price against convenience of a flight connection.

Search engines have done a remarkable job at directly connecting users with the web.
Users can publish documents of any form on the Web. For a keyword query, the user is
pointed to a set of documents that are most likely to be relevant to the user. This best-
effort nature can lead to possibly inaccurate results, but it allows the users the ability to
easily and efficiently get information into and out of the ever-changing Web.

In contrast, the database world has had the heritage of constructing rigid, precisely
defined, carefully planned, explicitly engineered, silos of information based on pre-
dictions regarding data and queries. It was assumed that information would be clean,
rigid and well structured. This has led to databases today being hard to design, hard to
modify, and hard to query.

When we look at characteristics of search, we find that there is very low prediction
and planning burden placed on users – neither to query nor to publish data. Furthermore,
precision, while desirable, is not required. In contrast, users interacting with databases
find themselves fighting an uphill battle with the constant flux of the data they deal with
in today’s highly connected world.

Our goal in this paper is to render database interaction lenient in its demands for pre-
diction, planning, and precision. We call this organic, to distinguish from the carefully
designed and engineered “synthetic” database and query system used today. The result
of an organic query may not be as perfect as the result of an engineered query, but it has
the benefit of not requiring precision and planning, and hence being more “natural” for
most users. To be able to develop such an organic system, let us first study the precision
and planning challenges that users face as they interact with databases.

2 Challenges

2.1 Structure Specification Challenge

Precise specification is challenging for users interacting with a database. Consider an
airline database with a basic schema shown in Figure 1, for tracing planes and flights.
The data encapsulated is starting location, destination, plane information, and times —
essentially what every passenger thinks of as a flight. Yet, in our normalized relational
representation, this single concept is recorded across four different tables. Such splat-
tering of data decreases the usability of the database in terms of schema comprehension,
join computation, and query expression.

First, given the large number of tables in a database, often with poorly named entities,
it is usually not easy to understand how to locate a particular piece of data. Even in a
toy schema such as Figure 1, there is the possibility of trouble. Obviously, the airports
table has information about the starting location and the destination. To find what is
used by a particular flight, we have to bring up the schema and follow the foreign key
constraint, or trace the database creation statements. Neither solution is user-friendly,
and thus the current solution is often to leave the task to DBAs.

The next problem users face is computing the joins. We break apart information
during the database design phase such that everything is normalized — space efficient

Organic Databases 51

airplane

id
type
serial_number

schedule

id
day_of_week
departure_time
arrival_time

flight_info

id
flight_number
airplane_id
tid
fid
schedule_id
date

airports

id
city_name
airport_name

Fig. 1. The base tables needed to store a “flight”. A flight contains from location, destination,
airplane info and schedule, yet consists of at least four tables. Note that an actual schema for such
data is likely to involve many more attributes and tables.

and amenable to updates. However, the users will have to stitch the information back
together to answer most real queries. The fundamental issue is that joins destroy the
connections between information pertaining to the same real world entities. Query spec-
ification is non-intuitive to most normal users in consequence. But even the design is
brittle. What if a single flight has multiple flight numbers on account of code sharing?
What about special flights not on a weekly schedule? There are any number of such
unanticipated possibilities that could render a carefully designed structure inadequate
instantly.

2.2 Remote Specification Challenge

Querying in its current form requires prediction on the part of the user. In our airline
database example, consider the specification of a three letter airport code. Some inter-
faces provide a drop down list of all the cities that the airline flies into. For an airline
of any size, this list can have hundreds of entries, most of which are not relevant to the
user. The fact that it is alphabetized may not help — there may be multiple airports for
some major cities, the airport may be named for a neighboring city, and so on.

A better interface allows a user to enter the name of the place they want to get to,
and then looks for close matches. This cannot be a simple string comparison — we
need Narita airport to be suggested no matter whether the user entered Narita or Tokyo
or even Tokyu. This does not seem too hard, and some airline web sites will do this.
But now consider a user who wants to visit Aizu. No airline search interface today, to
our knowledge, can suggest flying into Narita airport in response to a search for Aizu
airport even though that is likely to be the preferred solution for most travelers.

On account of difficulty in prediction, it is often the case that the user does not
initially specify the query correctly. The user then has to revise her query and resubmit

52 H.V. Jagadish, A. Nandi, and L. Qian

if it did not return desired results. However, essentially all query languages, including
visual query builders, separate query specification from output.

Our goal is to enable users to query a database in a WYSIWYG (What You See Is
What You Get) fashion. Consider the display of a world map. The user could zoom into
the area of interest and select airports geographically from the choices presented. Most
map databases today provide excellent direct manipulation capabilities, including pan,
zoom, and so on. Imagine a map database without these facilities that requires users
to specify, through a text selection of zip code or latitude/longitude, the portion of the
map that is of interest each time. We would find it terribly frustrating. Unfortunately,
most database query interfaces today are not WYSIWYG and can be compared to this
hypothetical frustrating map query interface.

What does WYSIWYG mean for databases? After all, the point of specifying a query
is to get information that the user does not possess. Even search engines are not WYSI-
WYG. A WYSIWYG interface for selection specification and data results involves a
constant predictive capability on the part of the system. For example, instantaneous-
response interfaces (56) allow users to gain insights into the schema and the data during
query time, which allows the user to continuously refine the query as they are typing
the initial query. By the time the user has typed out the entire query, the query has been
correctly formulated and the results have returned. Furthermore, if the user then wishes
to modify the query, this should be possible by direct manipulation of the result set
rather than an ab initio restatement of the query.

2.3 Schema Evolution Challenge

While database systems have fully established themselves in the corporate market, they
have not made a large impact on how users organize their everyday information. Many
users would like to put into their databases (8) information such as shopping lists, ex-
pense reports, etc. The main reason for this is that creating a database is not easy.

Database systems require that the schema be specified in advance, and then populated
with data. This burdens the user with developing an abstract design of the schema –
without any concrete data – a task that we computer scientists are trained to do, but
most others find very difficult. Furthermore, careful planning is required as users are
expected to predict what data they will need to store in the future, and what queries
they may ask, and use these predictions to develop a suitable schema.

Example 21. Consider a user, Jane, who started to keep track of her shopping lists.
The first list she created simply contained a list of items and quantities of each to be
purchased. After the first shopping trip, Jane realized that she needed to add price infor-
mation to the list to monitor her expenses and she also started marking items that were
not in stock at the store. A week before Thanksgiving, Jane created another shopping
list. However, this time, the items were gifts to her friends, and information about the
friends therefore needed to be added to create this “gift list.” A week after Christmas,
Jane started to create another “gift list” to track gifts she received from her friends.
However, the friends information were now about friends giving her gifts. In the end,
what started as a simple list of items for Jane had become a repository of items, stores,
and more importantly, friends — an important part of Jane’s life.

Organic Databases 53

The above example, although simple, illustrates how an everyday database evolves and
the many usability challenges facing a database system. First, users do not have a clear
knowledge of what the final structure of the database will be and therefore a com-
prehensive design of the database is impossible at the beginning. For example, Jane
did not know that she needed to keep track of information about her friends until the
time had come to buy gifts for them. Second, the structure of the database grows as
more information become available. For example, the information about price and out
of stock only became available after the shopping trip. Finally, information structures
may be heterogeneous. For example, the two “gift lists” that Jane created had different
semantics in their friends information and the database needs to gracefully handle this
heterogeneity.

In summary, for everyday data, the structure grows incrementally and a database sys-
tem must provide interfaces for users to easily create both unstructured and structured
information and to fluidly manipulate the structure when necessary.

3 Proposed Solution

3.1 Presentation Data Model

We propose the use of a presentation data model (36), as a full-fledged layer above
the physical and logical layers in the database. Just as the logical layer provides data
abstraction and saves the user from having to worry about physical data aspects such
as data structures, indices, access methods, etc., the presentation layer saves the user
from having to worry about logical data aspects such as relational structure, keys, joins,
constraints, etc. To do this, the presentation layer should be able to represent data in a
form most suited for the user to easily comprehend, manipulate and query.

3.2 Addressing Structure Specification Challenge

We address the structure specification challenge through the qunit search paradigm (57),
where the database is translated into a collection of independent qunits, which can be
treated as documents for standard IR-like document retrieval. A qunit is the basic, in-
dependent semantic unit of information in a database. It represents a quantified unit
of information in response to a user’s query. The database search problem then be-
comes one of choosing the most appropriate qunit(s) to return, in ranked order. Users
only have to input keywords, which is much simpler than navigating complex database
schema and specifying a structured query. In other words, the precision burden is lifted
from the user. Consider the flight example in Figure 1. A qunit “flight” can be defined
to represent the complete information of what a passenger thinks of as a flight. The
qunit includes starting location, destination, plane, and time of travel. This completely
relieves users from having to manually performing joins among all the tables. As a
user inputs a search criterion, for example “from DTW to LAX, Jan. 2010”, qunits are
ranked based on the input and the best matches are presented to the user.

We now explain the definition of qunits over a database, and how to search based on
qunits. We use a slightly more complex IMDb movie database in order to explain more
effectively. Figure 2 (a) shows a simplified example schema of a movie database, which

54 H.V. Jagadish, A. Nandi, and L. Qian

person

cast

movie
genre

name
birthdate

gender

title

releasedate
rating

info

level

role

(a) An Simplified database schema (b) Qunit Search on IMDb

Fig. 2. Qunit Example

contains entities such as movie, cast, person, etc. Qunits are defined over this database
corresponding to various information needs. For example, we can define a qunit “cast”,
as the people associated with a movie. Meanwhile, rather than having the name of
the movie repeated with each tuple, we may prefer to have a nested presentation with
the movie title on top and one tuple for each cast member. The base data in IMDb is
relational, and against its schema, we would write the base expression in SQL with the
conversion expression in XSL-like markup as follows:

SELECT * FROM person, cast, movie
WHERE cast.movie_id = movie.id AND
cast.person_id = person.id AND
movie.title = "$x"
RETURN
<cast movie="$x">
<foreach:tuple>
<person>$person.name</person>
</foreach:tuple>
</cast>

The combination of these two expressions forms our qunit definition. On applying this
definition to a database, we derive qunit instances, one per movie.

To search based on qunits, consider the user query, star wars cast, as shown in Fig-
ure 2 (b). Queries are first processed to identify entities using standard query segmen-
tation techniques (73). In our case one high-ranking segmentation is “[movie.name]
[cast]” and this has a very high overlap with the qunit definition that involves a join be-
tween “movie.name” and “cast”. Now, standard IR techniques can be used to evaluate
this query against qunit instances of the identified type; each considered independently
even if they contain elements in common. The qunit instance describing the cast of the
movie Star Wars is chosen as the appropriate result.

In current models of keyword search in databases, several heuristics are applied to
leverage the database structure to construct a result on the fly. These heuristics are often
based on the assumption that the structure within the database reflects the semantics

Organic Databases 55

assumed by the user (though data / link cardinality is not necessarily an evidence of
importance), and that all structure is actually relevant towards ranking (though internal
id fields are never really meant for search).

3.3 Addressing Schema Evolution Challenge

In this section we address the schema evolution challenge (Sec. 2.3) by proposing a
technique for drag-and-drop modification of data schemas in the spreadsheet-like pre-
sentation model, enabling organic evolution of a schema and lifting the planning burden
from the user. Consider the example of Jane’s shopping list again. Figure 3 shows how
Jane can organically grow the schema of the shopping list table. Initially, she has only
columns for items to shop (Figure 3 (a)). She later tries to add information about friends
to whom the gifts will be given, for instance, by adding a “name” column in “Shopping
List”. But now, Peter, a close friend of Jane, appears twice since both item Xbox and
iPod will be given to him. As a result, Jane may think it makes more sense to group the
gifts by person. Jane can do this by dragging the header of the name column and drop-
ping it on the lower edge of the “Shopping List” (Figure 3 (b)). This makes the name
attribute a level up; the rest of the columns forms a sub-relation “Gift” (shown in Fig-
ure 3 (c)). Now Jane can feel free to add new information, such as an attribute “address”,
for her friends without worrying that these information would be duplicated (Figure 3
(d)). This process shows how effortless it is for Jane to grow the table about shopping
items to include information about friends and structure the table as she desires.

(a) Initial Shopping List (b) Moving Name Column

(c) After Moving Name Column (d) Adding Address Column

Fig. 3. Organic Schema Evolution

Next, we briefly outline the challenges in building a system such as this, and our
plans to tackle these challenges.

Specification: Specifying a schema update as in Figure 3 is challenging using existing
tools. For example, using conventional spreadsheet software, it is impossible to arrive
at a hierarchical schema as shown in Figure 3 (d). To specify the schema update, one
has to split the table manually. Alternatively, using a relational DBMS, one has to set
up the cross-table relationship, which is not easy for end-users, even with support from
GUI tools.

We show how to use a presentation layer to address the specification challenge. We
design the presentation layer based on a next-generation spreadsheet and it supports

56 H.V. Jagadish, A. Nandi, and L. Qian

easy schema creation and modification through a simple drag-and-drop interface. We
call such a spreadsheet span table because it is presented in such a way that both table
headers and data fields can span multiple cells. The presentation supports four key op-
erations: move an attribute to be part of a sub-relation (e.g., we can move the “Name”
column back to “Gift” in Figure 3 (d)), move an attribute out of a sub-relation (the con-
verse of the previous one), create a intermediate sub-relation by moving an attribute up
one layer (e.g., Jane moves “Name” out to create a new sub-relation under “Shopping
List” as in Figure 3 (b)) or down a layer (e.g., moving “In Stock” down deepens it by
inserting a new immediate level, with only “In Stock” in it; Jane can later add new
columns such as “Date” to indicate the timestamp of stocking information).

Data Migration: Once a new schema is specified, there is still a critical task of migrat-
ing existing data to the new schema. Because the schema structure is changed, one has
to introduce a complex mapping in order to “fit” the old data into the new schema. Even
if spreadsheet software supporting hierarchical schema is provided, the user may still
have to manually copy data in a cell-by-cell manner to perform such mapping, which is
extremely time-consuming and error-prone.

We address this challenge with an algebraic layer. Directly below the presentation
layer, the algebraic layer must translate drag-and-drops into operations that modify the
basic structure of the span table. For this purpose, we have proposed a novel span table
algebra consisted of three sets of operations. The first set, schema restructuring oper-
ators, corresponds to the four aforementioned operations in the presentation layer. We
also have a second set of schema modification operators for adding/dropping columns
in any sub-relations. Finally, there is a set of data manipulation operators (insert, delete,
and update), which extends traditional data edit to our hierarchical presentation. This
algebraic layer completely automates the data migration as soon as the the schema mod-
ification is performed.

Data Integrity: Expressing and understanding integrity constraints is central to schema
design, and thus also critical for an organic database where schema is continuously
evolved. Functional dependencies (FD) are often used in database design to add seman-
tics to schemas and to assert integrity constraints for data.

Nested functional dependencies have been studied extensively in the past (32). How-
ever, CRIUS presents some new challenges due to its user-centric support for data and
schema modification. When a user updates data, or modifies the schema, it is important
to understand how the update affects existing dependencies so that we can communi-
cate this information back to the user, and optionally take steps to resolve any resulting
inconsistencies.

For this challenge, we consider two specific operations: data value updates and
schema updates. For the former case, we show how data value updates and integrity
constraints interfere with each other and how we may take advantage of such infer-
ence to guide user data entry from a set of appropriately maintained FDs. Specifically,
we feature autocompletion for qualified data entry and provide a contextual menu to
alert the user each time she issues an update that violates a given FD, in order to pre-
serve data integrity. For schema updates, our hypothesis is that for each schema update

Organic Databases 57

operation there is a way to “rewrite” involved FDs to preserve their validity. Precisely
how to rewrite the schema is described in detail in (62).

Performance: Schema evolution is usually a heavy-weight operation in traditional
database systems. It is not unusual for a commercial database to take days to com-
plete the maintenance required after schema evolution. IT organizations carefully plan
schema changes, and make them only infrequently. In contrast, everyday users are un-
likely to plan carefully. We would like to develop techniques that support quick schema
evolution without giving up on any of the other desirable features.

We address performance challenge with a storage layer to implement a practical
means of actually storing the data. Conventionally, database systems have been de-
signed with the goal of optimizing query processing. However, schema modifications
(e.g., ALTER TABLE) are often time-consuming, heavy-weight operations in current
systems. We utilize a vertically partitioned format for the storage layer. Our goal is to
significantly reduce the performance penalty incurred due to schema modifications at a
very modest cost of overhead in query processing.

Understanding Schema Evolution: When a schema has evolved over an extended
period of time, it is difficult for a user to keep track of the changes. A natural need is to
concisely convey to the user how a database has been evolving. For example, the user
may query the relationship between columns in the initial schema and the final schema
and how the transformation from old columns to new ones took place over time. We
want to show users the gradual organic changes rather than a sudden transformation.
We could keep track of all the changes step by step, which requires all changes to be
maintained. If such information is not available, which is frequently the case when the
user looks at external data sources, we seek to automatically discover such evolution
from the data. Challenges involve mining conceptual changes from large amounts of
changes to the database (e.g. Inferring the splitting of every “Name” column in each
table to two “First Name” and “Last Name” columns, followed by a normalization of
the names into a single table). Mining such inferences can be done using either just the
data, or a combination of the data and provenance information.

4 Related Work

Database usability started to receive attention more than 25 years ago (23) and gained
more momentum lately (36). Research in database usability has been mainly focusing
on innovative and effective query interface design, including visual, text (i.e., keyword),
natural language interfaces, direct manipulation interfaces, and spreadsheet interfaces.

Visual Interfaces: Query By Example (79), which is the first study on building a query
interface not based on a database query language, allows users to implicitly construct
queries by identifying examples of desired data elements. This work is followed more
recently by QBT (65), Kaleidoquery (55), VISIONARY (9), MIX (54), Xing (27), and
XQBE (13). Alternatively, forms-based query interface design has also been receiving
attention. Early works on such interfaces include (26; 20), which provide users with
visual tools to frame queries and to perform tasks such as database design and view
definition. This direction is more recently followed by GRIDS (64) and Acuity (68),

58 H.V. Jagadish, A. Nandi, and L. Qian

and, in XML database systems, by FoXQ (1), EquiX (21), QURSED (60). Adaptive
form construction is studied in DRIVE (53), which enables runtime context-sensitive
interface editing for object-oriented databases, and in (38), which studies how forms
can be automatically designed and constructed based on past query history. Recent work
by Jayapandian and Jagadish proposes techniques for automatic construction of forms
based on database schema and data (39) and expressive form customization (40).

Text Interfaces: The success of Information Retrieval (IR) style (i.e., keyword based)
search among ordinary users has prompted database researcher to study a similar search
interface for database systems. The goal is to maintain the simplicity of the search and
exploit not only the textual content of the tuples, but also the structures within and
across tuples to rank the results in a way that is more effective than the traditional
IR-style ranking mechanism. For relational databases, this approach is first studied
by Goldman et. al. in (28) and followed by many systems, including DBXplorer (2),
BANKS (10), DISCOVER (34), and ObjectRank (7). For XML databases, the inher-
ently more complicated structure within the database content allows the researchers to
explore query languages ranging from pure keywords and approximate structural query,
and has led to various projects including XSEarch (22), XRANK (29), JuruXML (16),
FlexPath (5), Schema-Free XQuery (48), and Meaningful Summary Query (77). A more
recent trend in keyword-based search is to analyze a keyword query and automatically
discover the hidden semantic structures that the query carries. This trend has influenced
the design of projects for both traditional database search (41) and web search (51).

Natural Language Interfaces: Constructing a natural language interface to databases
has a long history (6). In particular, (66) analyzed the expressive power of a declar-
ative query language (SEQUEL) in comparison to natural language. Most recently,
NaLIX (47) proposed a generic natural language interface to XML database, which
is capable of adapting to multiple domains through user feedbacks. However, to this
day, natural language understanding is still an extremely difficult problem, and current
systems tend to be unreliable or unable to answer questions outside a few predefined
narrow domains (61).

Direct Manipulation Interfaces: Direct manipulation (67), although a crucial concept
in the user interface field, is seldom mentioned in database literature. Pasta-3 (46) is
one of the earliest efforts attempting a direct manipulation interface for databases, but
its support of direct manipulation is limited to allowing users to manipulate a query
expression with clicks and drags. Tioga-2 (4) (later developed into DataSplash (58)) is
a direct manipulation database visualization tool, and its visual query language allows
specification with a drag-and-drop interface. Its emphasis, however, is on visualization
instead of querying. Recent work by Liu and Jagadish (50) develops a direct manipula-
tion query interface based on an spreadsheet algebra.

Spreadsheet Interface: Spreadsheets have proven to be one of the most user-friendly
and popular interfaces for handling data, partially evidenced by the ubiquity of Mi-
crosoft Excel. FOCUS (71) provides an interface for manipulating local tables. Its query
operations are quite simple (e.g., allowing only one level of grouping and being highly

Organic Databases 59

restrictive on the form of query conditions). Tableau (30), which is built on VizQL (31),
specializes in interactive data visualization and is limited in querying capability. Spread-
sheets have also been used for data cleaning (63), logic programming (70), visualization
exploration (37), and photo management (43). Witkowski et al (75) proposed SQL ex-
tensions supporting spreadsheet-like computations in RDBMS.

Query interface is just one aspect of database usability, there are many other research
fields that have direct or indirect impacts on the usability of databases, which we briefly
describe below.

Personalization: Studies in this field attempt to customize database systems for each
individual user and therefore making them easier to explore and extract information by
the particular user, e.g., (24). In addition, studies have also been focusing on analyzing
past query workloads to detect the user interests and provide better results tuned to those
interests, e.g., (45; 19; 35). It is also worth noting that the notion of personalization has
also found interest in the information retrieval community, where the ranking of search
results is biased using a certain personalized metric (33; 42).

Automatic Database Management: To alleviate the burden on database administra-
tors, commercial database systems come with a suite of auxiliary tools. The AutoAdmin
project (3; 18) at Microsoft, initiated by Surajit Chaudhuri and his colleagues, makes
great strides with respect to many aspects of database configuration including physical
design and index tuning. Similarly, the Autonomic Computing project (49; 52) at IBM
provides a platform to tune a database system, including query optimization. However,
none of these projects deal with the user-level database usability that is the focus of this
proposal.

Database Schema Design: This has been studied extensively (11; 76; 12; 59). There is
a great deal of work on defining a good schema, both from the perspective of capturing
real-life requirements (e.g., normalization) and supporting efficient queries. However,
schema design has typically been considered a heavyweight, one-time operation, which
is done by a technically skilled database administrator, based on careful requirements
analysis and planning. The new challenge of enabling non-expert user to “give birth” to
a database schema was posed recently (36), but no solution was provided.

Usability Study in Other Systems: Usability of information retrieval systems was
studied in (72; 78), which analyzed usability errors and design flaws, and also in (25),
which performed a comparison of usability testing methods. Principles of user-centered
design were introduced in (44; 74), including how they could complement software
engineering techniques to create interactive systems. Incorporating usability into the
evaluation of computer systems was first studied in (14). An extensive user study was
performed in (17) to identify the reasons for user frustration in computing experiences,
while (15) takes a more formal approach to model user behavior for usability analysis.
There is also a recent move in the software systems community to conduct serious user
studies (69). However, for database systems in particular, these only scratch the surface
of what needs to be done to improve usability.

60 H.V. Jagadish, A. Nandi, and L. Qian

References

[1] Abraham, R.: FoXQ - XQuery by forms. In: IEEE Symposium on Human Centric Comput-
ing Languages and Environments (2003)

[2] Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A System for Keyword-Based Search over
Relational Databases. In: ICDE (2002)

[3] Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A., Narasayya, V., Syamala, M.: Database
Tuning Advisor for Microsoft SQL Server 2005. In: VLDB (2004)

[4] Aiken, A., Chen, J., Stonebraker, M., Woodruff, A.: Tioga-2: A direct manipulation database
visualization environment. In: ICDE, pp. 208–217 (1996)

[5] Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: FleXPath: Flexible Structure and Full-Text
Querying for XML. In: SIGMOD (2004)

[6] Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural Language Interfaces to Databases–an
introduction. Journal of Language Engineering 1(1), 29–81 (1995)

[7] Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword
Search in Databases. In: VLDB (2004)

[8] Bell, G., Gemmell, J.: A Digital Life (2007)
[9] Benzi, F., Maio, D., Rizzi, S.: Visionary: A Viewpoint-based Visual Language for Querying

Relational Databases. Journal of Visual Languages and Computing 10(2) (1999)
[10] Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword Searching

and Browsing in Databases using BANKS. In: ICDE (2002)
[11] Biskup, J.: Achievements of Relational Database Schema Design Theory Revisited. In:

Thalheim, B. (ed.) Semantics in Databases 1995. LNCS, vol. 1358, pp. 29–54. Springer,
Heidelberg (1998)

[12] Biskup, J.: Achievements of Relational Database Schema Design Theory Revisited. In:
Thalheim, B. (ed.) Semantics in Databases 1995. LNCS, vol. 1358, pp. 29–54. Springer,
Heidelberg (1998)

[13] Braga, D., Campi, A., Ceri, S.: XQBE (XQuery By Example): A Visual Interface to the
Standard XML Query Language. ACM Trans. Database Syst. 30(2) (2005)

[14] Brown, A.B., Chung, L.C., Patterson, D.A.: Including the Human Factor in Dependability
Benchmarks. In: DSN Workshop on Dependability Benchmarking (2002)

[15] Butterworth, R., Blandford, A., Duke, D.: Using Formal Models to Explore Display-Based
Usability Issues. Journal of Visual Languages and Computing 10(5) (1999)

[16] Carmel, D., Maarek, Y.S., Mandelbrod, M., Mass, Y., Soffer, A.: Searching XML Docu-
ments via XML Fragments. In: SIGIR (2003)

[17] Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., Shneiderman, B.: Determining Causes
and Severity of End-User Frustration. International Journal of Human Computer Interac-
tion 17(3) (2004)

[18] Chaudhuri, S., Weikum, G.: Rethinking Database System Architecture: Towards a Self-
Tuning, RISC-style Database System. In: VLDB (2000)

[19] Chen, Z., Li, T.: Addressing Diverse User Preferences in SQL-Query-Result Navigation.
In: SIGMOD (2007)

[20] Choobineh, J., Mannino, M.V., Tseng, V.P.: A Form-Based Approach for Database Analysis
and Design. CACM 35(2) (1992)

[21] Cohen, S., Kanza, Y., Kogan, Y., Sagiv, Y., Nutt, W., Serebrenik, A.: EquiX–A Search and
Query Language for XML. JASIST 53(6) (2002)

[22] Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine for XML.
In: VLDB (2003)

Organic Databases 61

[23] Date, C.J.: Database Usability. In: SIGMOD. ACM Press, New York (1983)
[24] Dong, X., Halevy, A.: A Platform for Personal Information Management and Integration.

In: CIDR (2005)
[25] Doubleday, A., Ryan, M., Springett, M., Sutcliffe, A.: A Comparison of Usability Tech-

niques for Evaluating Design. In: DIS (1997)
[26] Embley, D.W.: NFQL: The Natural Forms Query Language. ACM Trans. Database Syst.

(1989)
[27] Erwig, M.: A Visual Language for XML. In: IEEE Symposium on Visual Languages,
[28] Goldman, R., Shivakumar, N., Venkatasubramanian, S., Garcia-Molina, H.: Proximity

Search in Databases. In: VLDB (1998)
[29] Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search

over XML Documents. In: SIGMOD (2003)
[30] Hanrahan, P.: VizQL: A Language for Query, Analysis and Visualization. In: SIGMOD, pp.

721–721 (2006)
[31] Hanrahan, P.: Vizql: a language for query, analysis and visualization. In: SIGMOD, p. 721

(2006)
[32] Hara, C., Davidson, S.: Reasoning about nested functional dependencies. In: PODS (1999)
[33] Haveliwala, T.: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for

Web Search. IEEE Transactions on Knowledge and Data Engineering 15(4), 784–796
(2003)

[34] Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational Databases.
In: VLDB (2002)

[35] Ioannidis, Y.E., Viglas, S.: Conversational Querying. Inf. Syst. 31(1), 33–56 (2006)
[36] Jagadish, H.V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y., Nandi, A., Yu, C.: Making

database systems usable. In: SIGMOD (2007)
[37] Jankun-Kelly, T.J., Ma, K.-L.: A spreadsheet interface for visualization exploration. In:

IEEE Visualization, pp. 69–76 (2000)
[38] Jayapandian, M., Jagadish, H.V.: Automating the Design and Construction of Query Forms.

In: ICDE (2006)
[39] Jayapandian, M., Jagadish, H.V.: Automated creation of a forms-based database query in-

terface. In: VLDB (2008)
[40] Jayapandian, M., Jagadish, H.V.: Expressive query specification through form customiza-

tion. In: EDBT (2008)
[41] Jayram, T.S., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.: Avatar Informa-

tion Extraction System. IEEE Data Eng. Bull. 29(1), 40–48 (2006)
[42] Jeh, G., Widom, J.: Scaling Personalized Web Search. In: WWW, pp. 271–279 (2003)
[43] Kandel, S., Paepcke, A., Theobald, M., Garcia-Molina, H.: The photospread query lan-

guage. Technical report, Stanford Univ. (2007)
[44] Kelley, J.F.: An Iterative Design Methodology for User-Friendly Natural Language Office

Information Applications. ACM Trans. Database Syst. 2(1) (1984)
[45] Koutrika, G., Ioannidis, Y.: Personalization of Queries in Database Systems. In: ICDE

(2004)
[46] Kuntz, M., Melchert, R.: Pasta-3’s graphical query language: Direct manipulation, cooper-

ative queries, full expressive power. In: VLDB, pp. 97–105 (1989)
[47] Li, Y., Yang, H., Jagadish, H.V.: NaLIX: A Generic Natural Language Search Environment

for XML Data. ACM Transactions on Database Systems-TODS 32(4) (2007)
[48] Li, Y., Yu, C., Jagadish, H.V.: Enabling Schema-Free XQuery with Meaningful Query Fo-

cus. VLDB Journal (in press)

62 H.V. Jagadish, A. Nandi, and L. Qian

[49] Lightstone, S., Lohman, G.M., Haas, P.J., et al.: Making DB2 Products Self-Managing:
Strategies and Experiences. IEEE Data Eng. Bull. 29(3), 16–23 (2006)

[50] Liu, B., Jagadish, H.V.: A spreadsheet algebra for a direct data manipulation query interface.
In: ICDE (2009)

[51] Madhavan, J., Jeffery, S., Cohen, S., Dong, X., Ko, D., Yu, C., Halevy, A.: Web-scale Data
Integration: You Can Only Afford to Pay As You Go. In: CIDR (2007)

[52] Markl, V., Lohman, G.M., Raman, V.: LEO: An Autonomic Query Optimizer for DB2. IBM
Systems Journal 42(1), 98–106 (2003)

[53] Mitchell, K., Kennedy, J.: DRIVE: An Environment for the Organized Construction of User-
Interfaces to Databases. In: Interfaces to Databases, IDS-3 (1996)

[54] Mukhopadhyay, P., Papakonstantinou, Y.: Mixing Querying and Navigation in MIX. In:
ICDE (2002)

[55] Murray, N., Paton, N., Goble, C.: Kaleidoquery: A Visual Query Language for Object
Databases. In: Advanced Visual Interfaces (1998)

[56] Nandi, A., Jagadish, H.V.: Assisted Querying using Instant-Response Interfaces. In: SIG-
MOD (2007)

[57] Nandi, A., Jagadish, H.V.: Qunits: queried units for database search. In: CIDR (2009)
[58] Olston, C., Woodruff, A., Aiken, A., Chu, M., Ercegovac, V., Lin, M., Spalding, M., Stone-

braker, M.: Datasplash. In: SIGMOD, pp. 550–552 (1998)
[59] Papadomanolakis, E., Ailamaki, A.: Autopart: Automating schema design for large scien-

tific databases using data partitioning. In: SSDBM (2004)
[60] Papakonstantinou, Y., Petropoulos, M., Vassalos, V.: QURSED: Querying and Reporting

Semistructured Data. In: SIGMOD (2002)
[61] Popescu, A.-M., Etzioni, O., Kautz, H.A.: Towards a Theory of Natural Language Interfaces

to Databases. In: IUI (2003)
[62] Qian, L., LeFevre, K., Jagadish, H.V.: Crius: User-friendly database design. PVLDB 4(2),

81–92 (2010)
[63] Raman, V., Hellerstein, J.M.: Potter’s wheel: An interactive data cleaning system. In:

VLDB, pp. 381–390 (2001)
[64] Sabin, R.E., Yap, T.K.: Integrating Information Retrieval Techniques with Traditional DB

Methods in a Web-Based Database Browser. In: SAC (1998)
[65] Sengupta, A., Dillon, A.: Query by Templates: A Generalized Approach for Visual Query

Formulation for Text Dominated Databases. In: ADL (1997)
[66] Sheneiderman, B.: Improving the Human Factors Aspect of Database Interactions. ACM

Trans. Database Syst. 3(4) (1978)
[67] Shneiderman, B.: The future of interactive systems and the emergence of direct manipula-

tion. Behaviour & Information Technology 1(3), 237–256 (1982)
[68] Sinha, S., Bowers, K., Mamrak, S.A.: Accessing a Medical Database using WWW-Based

User Interfaces. Technical report, Ohio State University (1998)
[69] Soules, C., Shah, S., Ganger, G.R., Noble, B.D.: It’s Time to Bite the User Study Bullet.

Technical report, University of Michigan (2007)
[70] Spenke, M., Beilken, C.: A spreadsheet interface for logic programming. In: CHI, pp. 75–80

(1989)
[71] Spenke, M., Beilken, C., Berlage, T.: Focus: The interactive table for product comparison

and selection. In: UIST, pp. 41–50 (1996)
[72] Sutcliffe, A., Ryan, M., Doubleday, A., Springett, M.: Model Mismatch Analysis: Towards

a Deeper Explanation of Users’ Usability Problems. Behavior & Information Technol-
ogy 19(1) (2000)

Organic Databases 63

[73] Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and
wikipedia. In: WWW (2008)

[74] Wasserman, A.I.: User Software Engineering and the Design of Interactive Systems. In:
ICSE. IEEE Press, Piscataway (1981)

[75] Witkowski, A., Bellamkonda, S., Bozkaya, T., Dorman, G., Folkert, N., Gupta, A., Sheng,
L., Subramanian, S.: Spreadsheets in rdbms for olap. In: SIGMOD (2003)

[76] Wong, S.K.M., Butz, C.J., Xiang, Y.: Automated database schema design using mined data
dependencies. Journal of the American Society for Information Science 49, 455–470 (1998)

[77] Yu, C., Jagadish, H.V.: Querying Complex Structured Databases. In: VLDB (2007)
[78] Yuan, W.: End-User Searching Behavior in Information Retrieval: A Longitudinal Study.

JASIST 48(3) (1997)
[79] Zloof, M.M.: Query-by-Example: the Invocation and Definition of Tables and Forms. In:

VLDB (1975)

	Organic Databases

	Motivation
	Challenges
	Structure Specification Challenge
	Remote Specification Challenge
	Schema Evolution Challenge

	Proposed Solution
	Presentation Data Model
	Addressing Structure Specification Challenge
	Addressing Schema Evolution Challenge

	Related Work
	References

